Modeling and prediction of bioprocesses using multiple regression analysis

被引:0
|
作者
Teeradakorn, S [1 ]
Kishimoto, M [1 ]
Yoshida, T [1 ]
机构
[1] Chulalongkorn Univ, Inst Biotechnol & Genet Engn, Bangkok 10330, Thailand
来源
COMPUTER APPLICATIONS IN BIOTECHNOLOGY 1998: HORIZON OF BIOPROCESS SYSTEMS ENGINEERING IN 21ST CENTURY | 1998年
关键词
modeling; prediction; regression analysis;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A new approach of dealing with a regression analysis model was proposed for better prediction of state variable changes in glucose isomerase production by a Streptomyces fusant D3. A correction factor was introduced in the regression equation for the estimation of specific rate parameters taking into account the data distribution. Copyright (C) 1998 IFAC.
引用
收藏
页码:209 / 214
页数:6
相关论文
共 50 条
  • [41] Regression modeling method of space weather prediction
    Parnowski, A. S.
    ASTROPHYSICS AND SPACE SCIENCE, 2009, 323 (02) : 169 - 180
  • [42] Managing Colllinearity in Modeling the Effect of Age in the Prediction of Egg Components of Laying Hens Using Stepwise and Ridge Regression Analysis
    Shafey, T. M.
    Hussein, E. S.
    Mahmoud, A. H.
    Abouheif, M. A.
    Al-Batshan, H. A.
    BRAZILIAN JOURNAL OF POULTRY SCIENCE, 2015, 17 (04) : 473 - 482
  • [43] THE YIELD EQUATIONS IN THE MODELING AND CONTROL OF BIOPROCESSES
    ANDREWS, GF
    BIOTECHNOLOGY AND BIOENGINEERING, 1993, 42 (05) : 549 - 556
  • [44] Prediction of molar absorptivities of color reagents during their color reactions with cerium using multiple regression analysis and neural network
    Guo, M
    Xu, L
    Li, H
    Hu, CY
    ANALYTICAL SCIENCES, 1996, 12 (02) : 291 - 294
  • [45] Optimum Ridge Regression Parameter Using R-Squared of Prediction as a Criterion for Regression Analysis
    Akbar Irandoukht
    Journal of Statistical Theory and Applications, 2021, 20 : 242 - 250
  • [46] Modeling the energy content of ship-scraping waste at Alang - Sosiya, Gujarat, India, using multiple regression analysis
    Reddy, MS
    Basha, S
    Joshi, HV
    Kumar, VGS
    Jha, B
    Marg, GB
    OCEANS 2003 MTS/IEEE: CELEBRATING THE PAST...TEAMING TOWARD THE FUTURE, 2003, : 433 - 433
  • [47] Stream Temperature Modeling Using Functional Regression Models
    Boudreault, Jeremie
    Bergeron, Normand E.
    St-Hilaire, Andre
    Chebana, Fateh
    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, 2019, 55 (06): : 1382 - 1400
  • [48] Tide modeling using partial least squares regression
    Okwuashi, Onuwa
    Ndehedehe, Christopher
    Attai, Hosanna
    OCEAN DYNAMICS, 2020, 70 (08) : 1089 - 1101
  • [49] Using Static Analysis Data for Performance Modeling and Prediction
    Noudohouenou, Jose
    Jalby, William
    2014 INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING & SIMULATION (HPCS), 2014, : 933 - 942
  • [50] Prediction of flow characteristics using multiple regression and neural networks: A case study in Zimbabwe
    Mazvimavi, D
    Meijerink, AMJ
    Savenije, HHG
    Stein, A
    PHYSICS AND CHEMISTRY OF THE EARTH, 2005, 30 (11-16) : 639 - 647