Modeling and prediction of bioprocesses using multiple regression analysis

被引:0
|
作者
Teeradakorn, S [1 ]
Kishimoto, M [1 ]
Yoshida, T [1 ]
机构
[1] Chulalongkorn Univ, Inst Biotechnol & Genet Engn, Bangkok 10330, Thailand
来源
COMPUTER APPLICATIONS IN BIOTECHNOLOGY 1998: HORIZON OF BIOPROCESS SYSTEMS ENGINEERING IN 21ST CENTURY | 1998年
关键词
modeling; prediction; regression analysis;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A new approach of dealing with a regression analysis model was proposed for better prediction of state variable changes in glucose isomerase production by a Streptomyces fusant D3. A correction factor was introduced in the regression equation for the estimation of specific rate parameters taking into account the data distribution. Copyright (C) 1998 IFAC.
引用
收藏
页码:209 / 214
页数:6
相关论文
共 50 条
  • [21] Development of stock market trend prediction system using multiple regression
    Asghar, Muhammad Zubair
    Rahman, Fazal
    Kundi, Fazal Masud
    Ahmad, Shakeel
    COMPUTATIONAL AND MATHEMATICAL ORGANIZATION THEORY, 2019, 25 (03) : 271 - 301
  • [22] Modeling and optimization of spring-back in bending process using multiple regression analysis and neural computation
    Teimouri, Reza
    Baseri, Hamid
    Rahmani, Behzad
    Bakhshi-Jooybari, Mohammad
    INTERNATIONAL JOURNAL OF MATERIAL FORMING, 2014, 7 (02) : 167 - 178
  • [23] Assessment of slope stability using multiple regression analysis
    Marrapu, Balendra M.
    Jakka, Ravi S.
    GEOMECHANICS AND ENGINEERING, 2017, 13 (02) : 237 - 254
  • [24] Modeling of soil penetration resistance using multiple linear regression (MLR)
    Elaoud, Anis
    Ben Hassen, Hanen
    Ben Salah, Nahla
    Masmoudi, Afif
    Chehaibi, Sayed
    ARABIAN JOURNAL OF GEOSCIENCES, 2017, 10 (20)
  • [25] Modeling of soil penetration resistance using multiple linear regression (MLR)
    Anis Elaoud
    Hanen Ben Hassen
    Nahla Ben Salah
    Afif Masmoudi
    Sayed Chehaibi
    Arabian Journal of Geosciences, 2017, 10
  • [26] Modeling of retardance in ferrofluid with Taguchi-based multiple regression analysis
    Lin, Jing-Fung
    Wu, Jyh-Shyang
    Sheu, Jer-Jia
    INTERNATIONAL CONFERENCE ON EXPERIMENTAL MECHANICS 2014, 2015, 9302
  • [27] Georgia flu prediction using CDC and Twitter data with regression and time series analysis
    Wahid, Ali
    2021 INTERNATIONAL CONFERENCE ON DECISION AID SCIENCES AND APPLICATION (DASA), 2021,
  • [28] Prediction of late enophthalmos using quantitative measures in isolated medial orbital wall fracture: Multiple regression analysis
    Mo, Young Woong
    Kim, Sung Woo
    Shin, Hea Kyeong
    JOURNAL OF PLASTIC RECONSTRUCTIVE AND AESTHETIC SURGERY, 2020, 73 (03): : 576 - 585
  • [29] Quality by Design Approach Using Multiple Linear and Logistic Regression Modeling Enables Microemulsion Scale Up
    Herneisey, Michele
    Lambert, Eric
    Kachel, Allison
    Shychuck, Emma
    Drennen, James K., III
    Janjic, Jelena M.
    MOLECULES, 2019, 24 (11):
  • [30] Improving the Prediction of Total Surgical Procedure Time Using Linear Regression Modeling
    Edelman, Eric R.
    van Kuijk, Sander M. J.
    Hamaekers, Ankie E. W.
    de Korte, Marcel J. M.
    van Merode, Godefridus G.
    Buhre, Wolfgang F. F. A.
    FRONTIERS IN MEDICINE, 2017, 4