Grain-boundary modelling of hydrogen assisted intergranular stress corrosion cracking

被引:28
作者
Benedetti, Ivano [1 ]
Gulizzi, Vincenzo [1 ]
Milazzo, Alberto [1 ]
机构
[1] Univ Palermo, Dept Civil Environm Aerosp & Mat Engn DICAM, Viale Sci,Edificio 8, I-90128 Palermo, Italy
关键词
Polycrystalline materials; Stress corrosion cracking; Hydrogen embrittlement; Micro-mechanics; Boundary element method; AUSTENITIC STAINLESS-STEEL; POLYCRYSTALLINE MATERIALS; CRYSTAL PLASTICITY; EMBRITTLEMENT; DEGRADATION; FORMULATION; FRACTURE; FAILURE; GROWTH; IRON;
D O I
10.1016/j.mechmat.2017.11.001
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A novel hybrid strategy for modelling intergranular hydrogen embrittlement in polycrystalline microstructures is proposed. The technique is based on a grain-boundary integral representation of the polycrystalline micro mechanics, numerically solved by the boundary element method, coupled with an explicit finite element model of the intergranular hydrogen diffusion. The intergranular interaction between contiguous grains in the aggregate is modelled through extrinsic cohesive-frictional traction-separation laws, whose parameters depend on the concentration of intergranular hydrogen, which diffuses over the interface according to the Fick's second law, inducing the weakening of the interface itself. The model couples the advantages of the boundary element representation of the polycrystalline micro-mechanics, namely the reduction of the mechanical degrees of freedom, with the generality of the finite element modelling of the diffusion process, which in principle allows the straightforward coupling of the interfacial effective diffusivity with other local mechanical parameters, e.g. the interfacial damage or displacement opening. Several numerical tests complete the study, showing the potential of the proposed technique.
引用
收藏
页码:137 / 151
页数:15
相关论文
共 52 条
[11]   A fast hierarchical dual boundary element method for three-dimensional elastodynamic crack problems [J].
Benedetti, I. ;
Aliabadi, M. H. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 84 (09) :1038-1067
[12]   A fast dual boundary element method for 3D anisotropic crack problems [J].
Benedetti, I. ;
Milazzo, A. ;
Aliabadi, M. H. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 80 (10) :1356-1378
[13]   Three-dimensional modelling of intergranular fatigue failure of fine grain polycrystalline metallic MEMS devices [J].
Bomidi, J. A. R. ;
Weinzapfel, N. ;
Sadeghi, F. .
FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2012, 35 (11) :1007-1021
[14]   Boundary element formulations for the dynamic analysis of cracked structures [J].
Fedelinski, P ;
Aliabadi, MH ;
Rooke, DP .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 1996, 17 (01) :45-56
[15]   2D analysis of intergranular dynamic crack propagation in polycrystalline materials a multiscale cohesive zone model and dual reciprocity boundary elements [J].
Galvis, A. F. ;
Sollero, P. .
COMPUTERS & STRUCTURES, 2016, 164 :1-14
[16]   Micromechanical boundary element modelling of transgranular and intergranular cohesive cracking in polycrystalline materials [J].
Geraci, G. ;
Aliabadi, M. H. .
ENGINEERING FRACTURE MECHANICS, 2017, 176 :351-374
[17]   Fundamental solutions for general anisotropic multi-field materials based on spherical harmonics expansions [J].
Gulizzi, V. ;
Milazzo, A. ;
Benedetti, I. .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2016, 100 :169-186
[18]   An enhanced grain-boundary framework for computational homogenization and micro-cracking simulations of polycrystalline materials [J].
Gulizzi, V. ;
Milazzo, A. ;
Benedetti, I. .
COMPUTATIONAL MECHANICS, 2015, 56 (04) :631-651
[19]  
Gulizzi V., 2016, T TECH PUBL, V665, P65
[20]   First principles assessment of ideal fracture energies of materials with mobile impurities: implications for hydrogen embrittlement of metals [J].
Jiang, DE ;
Carter, EA .
ACTA MATERIALIA, 2004, 52 (16) :4801-4807