Bifunctional heater-thermometer Nd3+-doped nanoparticles with multiple temperature sensing parameters

被引:60
作者
Kolesnikov, I. E. [1 ,2 ]
Kalinichev, A. A. [1 ]
Kurochkin, M. A. [1 ]
Mamonova, D., V [1 ]
Kolesnikov, E. Yu [3 ]
Lahderanta, E. [2 ]
Mikhailov, M. D. [4 ]
机构
[1] St Petersburg State Univ, 7-9 Univ Skaya Nab, St Petersburg 199034, Russia
[2] LUT, Skinnarilankatu 34, Lappeenranta 53850, Finland
[3] Volga State Univ Technol, Lenin Sqr 3, Yoshkar Ola 424000, Russia
[4] VNTs SI Vavilov State Opt Inst, Sci & Technol Inst Opt Mat Sci, Babushkina 36-1, St Petersburg 192171, Russia
基金
俄罗斯科学基金会;
关键词
Nd3+; luminescence; thermometry; nanosensor; hyperthermia; biological window; SHARP EMISSION-LINES; STARK ENERGY-LEVELS; THERMAL SENSITIVITY; ND3+; LUMINESCENCE; LANTHANIDE; NANOTHERMOMETERS; TRANSITION; GARNET; SHIFTS;
D O I
10.1088/1361-6528/aafcb8
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Achieving a combination of real-time diagnosis and therapy in a single platform with sensitive thermometry and efficient heat production is a crucial step towards controllable photothermal therapy. Here, Nd3+-doped Y2O3 nanoparticles prepared using the combined Pechini-foaming technique operating in the first and second biological windows were demonstrated as thermal sensors within the wide temperature range of 123-873 K, and as heaters with a temperature increase of 100 K. Thermal sensing was performed based on various approaches: luminescence intensity ratio (electronic levels; Stark sublevels), spectral line position and line bandwidth were used as temperature-dependent parameters. The applicability of these sensing parameters, along with relative thermal sensitivity and temperature resolution, are discussed and compared. The influence of Nd3+-doping concentration on thermometer and heater efficiency was also investigated.
引用
收藏
页数:11
相关论文
共 61 条
[1]   Ratiometric Optical Thermometer Based on Dual Near-Infrared Emission in Cr3+-Doped Bismuth-Based Gallate Host [J].
Back, Michele ;
Trave, Enrico ;
Ueda, Jumpei ;
Tanabe, Setsuhisa .
CHEMISTRY OF MATERIALS, 2016, 28 (22) :8347-8356
[2]   Boosting the sensitivity of Nd3+-based luminescent nanothermometers [J].
Balabhadra, Sangeetha ;
Debasu, Mengistie L. ;
Brites, Carlos D. S. ;
Nunes, Luis A. O. ;
Malta, Oscar L. ;
Rocha, Joao ;
Bettinelli, Marco ;
Carlos, Luis D. .
NANOSCALE, 2015, 7 (41) :17261-17267
[3]   Nd:YAG Near-Infrared Luminescent Nanothermometers [J].
Benayas, Antonio ;
del Rosal, Blanca ;
Perez-Delgado, Alberto ;
Santacruz-Gomez, Karla ;
Jaque, Daniel ;
Alonso Hirata, Gustavo ;
Vetrone, Fiorenzo .
ADVANCED OPTICAL MATERIALS, 2015, 3 (05) :687-694
[4]  
Brites CDS, 2016, HBK PHYS CHEM RARE, V49, P339, DOI 10.1016/bs.hpcre.2016.03.005
[5]   Widening the Temperature Range of Luminescent Thermometers through the Intra- and Interconfigurational Transitions of Pr3+ [J].
Brites, Carlos D. S. ;
Fiaczyk, Karolina ;
Ramalho, Joao F. C. B. ;
Sojka, Malgorzata ;
Carlos, Luis D. ;
Zych, Eugeniusz .
ADVANCED OPTICAL MATERIALS, 2018, 6 (10)
[6]   Thermometry at the nanoscale [J].
Brites, Carlos D. S. ;
Lima, Patricia P. ;
Silva, Nuno J. O. ;
Millan, Angel ;
Amaral, Vitor S. ;
Palacio, Fernando ;
Carlos, Luis D. .
NANOSCALE, 2012, 4 (16) :4799-4829
[7]   Taking advantage of luminescent lanthanide ions [J].
Bünzli, JCG ;
Piguet, C .
CHEMICAL SOCIETY REVIEWS, 2005, 34 (12) :1048-1077
[8]   Intratumoral Thermal Reading During Photo-Thermal Therapy by Multifunctional Fluorescent Nanoparticles [J].
Carrasco, Elisa ;
del Rosal, Blanca ;
Sanz-Rodriguez, Francisco ;
Juarranz de la Fuente, Angeles ;
Haro Gonzalez, Patricia ;
Rocha, Ueslen ;
Upendra Kumar, Kagola ;
Jacinto, Carlos ;
Garcia Sole, Jose ;
Jaque, Daniel .
ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (04) :615-626
[9]   PHONON EFFECTS ON SHARP LUMINESCENCE LINES OF ND3+ IN GD3SC2GA3O12 GARNET (GSGG) [J].
CHEN, XS ;
DIBARTOLO, B .
JOURNAL OF LUMINESCENCE, 1993, 54 (05) :309-318
[10]   Tuning the sensitivity of lanthanide-activated NIR nanothermometers in the biological windows [J].
Cortelletti, P. ;
Skripka, A. ;
Facciotti, C. ;
Pedroni, M. ;
Caputo, G. ;
Pinna, N. ;
Quintanilla, M. ;
Benayas, A. ;
Vetrone, F. ;
Speghini, A. .
NANOSCALE, 2018, 10 (05) :2568-2576