The Ising Susceptibility Scaling Function

被引:31
作者
Chan, Y. [2 ]
Guttmann, A. J. [2 ]
Nickel, B. G. [3 ]
Perk, J. H. H. [1 ,4 ,5 ]
机构
[1] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA
[2] Univ Melbourne, Dept Math & Stat, Parkville, Vic 3052, Australia
[3] Univ Guelph, Dept Phys, Guelph, ON N1G 2W1, Canada
[4] Australian Natl Univ, Dept Theoret Phys RSPE, Canberra, ACT 2600, Australia
[5] Australian Natl Univ, Ctr Math & Its Applicat CMA, Canberra, ACT 2600, Australia
基金
澳大利亚研究理事会; 美国国家科学基金会;
关键词
Ising model; Susceptibility; Triangular lattice; Honeycomb lattice; Series expansion; Corrections to scaling; LOW-TEMPERATURE EXPANSIONS; DIFFERENCE-EQUATIONS; MODEL; UNIVERSALITY; DERIVATION; AMPLITUDES;
D O I
10.1007/s10955-011-0212-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We have dramatically extended the zero field susceptibility series at both high and low temperature of the Ising model on the triangular and honeycomb lattices, and used these data and newly available further terms for the square lattice to calculate a number of terms in the scaling function expansion around both the ferromagnetic and, for the square and honeycomb lattices, the antiferromagnetic critical point.
引用
收藏
页码:549 / 590
页数:42
相关论文
共 47 条
[1]   UNIVERSALITY IN ANALYTIC CORRECTIONS TO SCALING FOR PLANAR ISING-MODELS [J].
AHARONY, A ;
FISHER, ME .
PHYSICAL REVIEW LETTERS, 1980, 45 (09) :679-682
[2]   NON-LINEAR SCALING FIELDS AND CORRECTIONS TO SCALING NEAR CRITICALITY [J].
AHARONY, A ;
FISHER, ME .
PHYSICAL REVIEW B, 1983, 27 (07) :4394-4400
[3]  
[Anonymous], THESIS STATE U NEW Y
[4]   Susceptibility calculations in periodic and quasiperiodic planar Ising models [J].
Au-Yang, H ;
Perk, JHH .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 321 (1-2) :81-89
[5]  
Au-Yang H, 2002, PROG MATH P, V23, P1
[6]  
Au-Yang H, 2002, PROG MATH P, V23, P23
[7]   CRITICAL CORRELATIONS IN A Z-INVARIANT INHOMOGENEOUS ISING-MODEL [J].
AUYANG, H ;
PERK, JHH .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1987, 144 (01) :44-104
[8]   ZERO-FIELD SUSCEPTIBILITY OF 2-DIMENSIONAL ISING-MODEL NEAR TC [J].
BAROUCH, E ;
MCCOY, BM ;
WU, TT .
PHYSICAL REVIEW LETTERS, 1973, 31 (23) :1409-1411
[9]   SOLVABLE 8-VERTEX MODEL ON AN ARBITRARY PLANAR LATTICE [J].
BAXTER, RJ .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1978, 289 (1359) :315-346
[10]   Experimental mathematics on the magnetic susceptibility of the square lattice Ising model [J].
Boukraa, S. ;
Guttmann, A. J. ;
Hassani, S. ;
Jensen, I. ;
Maillard, J-M ;
Nickel, B. ;
Zenine, N. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (45)