Fractal Dimension of the Universal Julia Sets for the Chebyshev-Halley Family of Methods

被引:2
作者
Gutierrez, J. M. [1 ]
Magrenan, A. A. [1 ]
Varona, J. L. [1 ]
机构
[1] Univ La Rioja, Dept Matemat & Computac, La Rioja, Spain
来源
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS A-C | 2011年 / 1389卷
关键词
fractal dimension; Julia set; Chebyshev-Halley methods; box-counting;
D O I
10.1063/1.3637794
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The concept of universal Julia set introduced in [5] allows us to conclude that the dynamics of a root-finding algorithm applied to any quadratic polynomial can be understood through the analysis of a particular rational map. In this study we go a step beyond in this direction. In particular, we can define the universal fractal dimension of the aforementioned algorithms as the fractal dimension of they corresponding universal Julia sets.
引用
收藏
页数:4
相关论文
共 8 条
[1]   Geometric constructions of iterative functions to solve nonlinear equations [J].
Amat, S ;
Busquier, S ;
Gutiérrez, JM .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 157 (01) :197-205
[2]  
Fagella N., 2007, ITERACION COMPLEJA F
[3]  
GUTIERREZ J. M., APPL MATH C IN PRESS
[4]  
Hageman L.A., 2012, Applied Iterative Methods
[5]   Julia sets for the super-Newton method, Cauchy's method, and Halley's method [J].
Kneisl, K .
CHAOS, 2001, 11 (02) :359-370
[6]  
Peitgen H, 2004, Chaos and fractals: new frontiers of science
[7]   Graphic and numerical comparison between iterative methods [J].
Varona, JL .
MATHEMATICAL INTELLIGENCER, 2002, 24 (01) :37-46
[8]  
WERNER W., 1981, LECT NOTES MATH, V878, P427