Electrochemical and Spectroscopic Study of Mononuclear Ruthenium Water Oxidation Catalysts: A Combined Experimental and Theoretical Investigation

被引:16
作者
de Ruiter, J. M. [1 ]
Purchase, R. L. [1 ]
Monti, A. [1 ]
van der Ham, C. J. M. [1 ]
Gullo, M. P. [2 ]
Joya, K. S. [1 ,3 ]
D'Angelantonio, M. [2 ]
Barbieri, A. [2 ]
Hetterscheid, D. G. H. [1 ]
de Groot, H. J. M. [1 ]
Buda, F. [1 ]
机构
[1] Leiden Univ, Leiden Inst Chem, Einsteinweg 55, NL-2300 RA Leiden, Netherlands
[2] ISOF, CNR, Area Ric Bologna, Via Pietro Gobetti 101, I-40129 Bologna, Italy
[3] King Abdullah Univ Sci & Technol, KAUST Catalysis Ctr KCC, Div Phys Sci & Engn, 4700 KAUST, Thuwal 239556900, Saudi Arabia
来源
ACS CATALYSIS | 2016年 / 6卷 / 11期
关键词
water oxidation catalyst; ruthenium water oxidation catalyst; density functional theory; surface-enhanced raman spectroscopy; online electrochemical mass spectrometry; cyclic voltammetry; UV-vis spectroscopy; pulse radiolysis; EFFECTIVE CORE POTENTIALS; MOLECULAR CALCULATIONS; IRIDIUM COMPLEXES; ELECTRON-TRANSFER; LIGAND COMPLEXES; HIGHLY EFFICIENT; RESONANCE RAMAN; MECHANISM; REDUCTION; RADICALS;
D O I
10.1021/acscatal.6b02345
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
One of the key challenges in designing light-driven artificial photosynthesis devices is the optimization of the catalytic water oxidation process. For this optimization it is crucial to establish the catalytic mechanism and the intermediates of the catalytic cycle, yet a full description is often difficult to obtain using only experimental data. Here we consider a series of mononuclear ruthenium water oxidation catalysts of the form [Ru(cy)(L)(H2O)](2+) (cy = p-cymene, L = 2,2'-bipyridine and its derivatives). The proposed catalytic cycle and intermediates are examined using density functional theory (DFT), radiation chemistry, spectroscopic techniques, and electrochemistry to establish the water oxidation mechanism. The stability of the catalyst is investigated using online electrochemical mass spectrometry (OLEMS). The comparison between the calculated absorption spectra of the proposed intermediates with experimental spectra, as well as free energy calculations with electrochemical data, provides strong evidence for the proposed pathway: a water oxidation catalytic cycle involving four proton-coupled electron transfer (PCET) steps. The thermodynamic bottleneck is identified as the third PCET step, which involves O-O bond formation. The good agreement between the optical and thermodynamic data and DFT predictions further confirms the general applicability of this methodology as a powerful tool in the characterization of water oxidation catalysts and for the interpretation of experimental observables.
引用
收藏
页码:7340 / 7349
页数:10
相关论文
共 84 条
  • [11] 4,4′-Unsymmetrically substituted-2,2′-bipyridines: novel bidentate ligands on ruthenium(ii) [3+2+1] mixed ligand complexes for efficient sensitization of nanocrystalline TiO2 in dye solar cells
    Chandrasekharam, M.
    Kumar, Ch Pavan
    Singh, Surya Prakash
    Anusha, V.
    Bhanuprakash, K.
    Islam, A.
    Han, L.
    [J]. RSC ADVANCES, 2013, 3 (48) : 26035 - 26046
  • [12] Mechanism of Water Oxidation by Single-Site Ruthenium Complex Catalysts
    Concepcion, Javier J.
    Tsai, Ming-Kang
    Muckerman, James T.
    Meyer, Thomas J.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (05) : 1545 - 1557
  • [13] The Mechanism of Water Oxidation: From Electrolysis via Homogeneous to Biological Catalysis
    Dau, Holger
    Limberg, Christian
    Reier, Tobias
    Risch, Marcel
    Roggan, Stefan
    Strasser, Peter
    [J]. CHEMCATCHEM, 2010, 2 (07) : 724 - 761
  • [14] Solar Water Splitting Combining a BiVO4 Light Absorber with a Ru-Based Molecular Cocatalyst
    de Respinis, Moreno
    Joya, Khurram S.
    De Groot, Huub J. M.
    D'Souza, Francis
    Smith, Wilson A.
    van de Krol, Roel
    Dam, Bernard
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (13) : 7275 - 7281
  • [15] Iridium Dihydroxybipyridine Complexes Show That Ligand Deprotonation Dramatically Speeds Rates of Catalytic Water Oxidation
    DePasquale, Joseph
    Nieto, Ismael
    Reuther, Lauren E.
    Herbst-Gervasoni, Corey J.
    Paul, Jared J.
    Mochalin, Vadym
    Zeller, Matthias
    Thomas, Christine M.
    Addison, Anthony W.
    Papish, Elizabeth T.
    [J]. INORGANIC CHEMISTRY, 2013, 52 (16) : 9175 - 9183
  • [16] Electrochemical and Spectroelectrochemical Characterization of an Iridium-Based Molecular Catalyst for Water Splitting: Turnover Frequencies, Stability, and Electrolyte Effects
    Diaz-Morales, Oscar
    Hersbach, Thomas J. P.
    Hetterscheid, Dennis G. H.
    Reek, Joost N. H.
    Koper, Marc T. M.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (29) : 10432 - 10439
  • [17] Electrochemical water splitting by gold: evidence for an oxide decomposition mechanism
    Diaz-Morales, Oscar
    Calle-Vallejo, Federico
    de Munck, Casper
    Koper, Marc T. M.
    [J]. CHEMICAL SCIENCE, 2013, 4 (06) : 2334 - 2343
  • [18] Highly efficient and robust molecular ruthenium catalysts for water oxidation
    Duan, Lele
    Araujo, Carlos Moyses
    Ahlquist, Marten S. G.
    Sun, Licheng
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (39) : 15584 - 15588
  • [19] Duan LL, 2012, NAT CHEM, V4, P418, DOI [10.1038/NCHEM.1301, 10.1038/nchem.1301]
  • [20] Chemical and Photochemical Water Oxidation Catalyzed by Mononuclear Ruthenium Complexes with a Negatively Charged Tridentate Ligand
    Duan, Lele
    Xu, Yunhua
    Gorlov, Mikhail
    Tong, Lianpeng
    Andersson, Samir
    Sun, Licheng
    [J]. CHEMISTRY-A EUROPEAN JOURNAL, 2010, 16 (15) : 4659 - 4668