Feature Pyramid Networks for Object Detection

被引:14776
|
作者
Lin, Tsung-Yi [1 ,2 ,3 ]
Dollar, Piotr [1 ]
Girshick, Ross [1 ]
He, Kaiming [1 ]
Hariharan, Bharath [1 ]
Belongie, Serge [2 ,3 ]
机构
[1] Facebook AI Res, Menlo Pk, CA USA
[2] Cornell Univ, Ithaca, NY 14853 USA
[3] Cornell Tech, New York, NY 10044 USA
关键词
D O I
10.1109/CVPR.2017.106
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Feature pyramids are a basic component in recognition systems for detecting objects at different scales. But recent deep learning object detectors have avoided pyramid representations, in part because they are compute and memory intensive. In this paper, we exploit the inherent multi-scale, pyramidal hierarchy of deep convolutional networks to construct feature pyramids with marginal extra cost. A topdown architecture with lateral connections is developed for building high-level semantic feature maps at all scales. This architecture, called a Feature Pyramid Network (FPN), shows significant improvement as a generic feature extractor in several applications. Using FPN in a basic Faster R-CNN system, our method achieves state-of-the-art single-model results on the COCO detection benchmark without bells and whistles, surpassing all existing single-model entries including those from the COCO 2016 challenge winners. In addition, our method can run at 5 FPS on a GPU and thus is a practical and accurate solution to multi-scale object detection. Code will be made publicly available.
引用
收藏
页码:936 / 944
页数:9
相关论文
共 50 条
  • [31] Extended Feature Pyramid Network for Small Object Detection
    Deng, Chunfang
    Wang, Mengmeng
    Liu, Liang
    Liu, Yong
    Jiang, Yunliang
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 1968 - 1979
  • [32] GraphFPN: Graph Feature Pyramid Network for Object Detection
    Zhao, Gangming
    Ge, Weifeng
    Yu, Yizhou
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 2743 - 2752
  • [33] Feature Shrinkage Pyramid for Camouflaged Object Detection with Transformers
    Huang, Zhou
    Dai, Hang
    Xiang, Tian-Zhu
    Wang, Shuo
    Chen, Huai-Xin
    Qin, Jie
    Xiong, Huan
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 5557 - 5566
  • [34] Lightweight object detection model fused with feature pyramid
    Wang, Chunzhi
    Wang, Zaoning
    Li, Ke
    Gao, Rong
    Yan, Lingyu
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (01) : 601 - 618
  • [35] Lightweight object detection model fused with feature pyramid
    Chunzhi Wang
    Zaoning Wang
    Ke Li
    Rong Gao
    Lingyu Yan
    Multimedia Tools and Applications, 2023, 82 : 601 - 618
  • [36] HYPER FEATURE FUSION PYRAMID NETWORK FOR OBJECT DETECTION
    Huang, Shouzhi
    Li, Xiaoyu
    Jiang, Zhuqing
    Guo, Xiaoqiang
    Men, Aidong
    2018 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW 2018), 2018,
  • [37] Transformed Dynamic Feature Pyramid for Small Object Detection
    Liang, Hong
    Yang, Ying
    Zhang, Qian
    Feng, Linxia
    Ren, Jie
    Liang, Qiyao
    IEEE ACCESS, 2021, 9 : 134649 - 134659
  • [38] Annular Feature Pyramid Network for Salient Object Detection
    Zheng, Tao
    Li, Bo
    Liu, Jiajia
    2019 ELEVENTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI 2019), 2019, : 1 - 6
  • [39] Feature enhancement modules applied to a feature pyramid network for object detection
    Liu, Min
    Lin, Kun
    Huo, Wujie
    Hu, Lanlan
    He, Zhizi
    PATTERN ANALYSIS AND APPLICATIONS, 2023, 26 (02) : 617 - 629
  • [40] Feature enhancement modules applied to a feature pyramid network for object detection
    Min Liu
    Kun Lin
    Wujie Huo
    Lanlan Hu
    Zhizi He
    Pattern Analysis and Applications, 2023, 26 : 617 - 629