Markov chain Monte Carlo analysis of correlated count data

被引:161
|
作者
Chib, S [1 ]
Winkelmann, R
机构
[1] Washington Univ, John M Olin Sch Business, St Louis, MO 63130 USA
[2] IZA Bonn, D-53072 Bonn, Germany
关键词
latent effects; Metropolis-Hastings algorithm; multivariate count data; Poisson-lognormal distribution;
D O I
10.1198/07350010152596673
中图分类号
F [经济];
学科分类号
02 ;
摘要
This article is concerned with the analysis of correlated count data. A class of models is proposed in which the correlation among the counts is represented by correlated latent effects. Special cases of the model are discussed and a tuned and efficient Markov chain Monte Carlo algorithm is developed to estimate the model under both multivariate normal and multivariate-t assumptions on the latent effects. The methods are illustrated with two real data examples of six and sixteen variate correlated counts.
引用
收藏
页码:428 / 435
页数:8
相关论文
共 50 条
  • [21] Bayesian analysis of correlated evolution of discrete characters by reversible-jump Markov chain Monte Carlo
    Pagel, Mark
    Meade, Andrew
    AMERICAN NATURALIST, 2006, 167 (06): : 808 - 825
  • [22] Analysis of aerial survey data on Florida manatee using Markov chain Monte Carlo
    Craig, BA
    Newton, MA
    Garrott, RA
    Reynolds, JE
    Wilcox, JR
    BIOMETRICS, 1997, 53 (02) : 524 - 541
  • [23] Markov chain Monte Carlo approach to the analysis of response patterns in data collection process
    Chun, Young H.
    Watson, Edward F.
    INFOR, 2023, 61 (04) : 509 - 529
  • [24] A MARGINALISED MARKOV CHAIN MONTE CARLO APPROACH FOR MODEL BASED ANALYSIS OF EEG DATA
    Hettiarachchi, Imali
    Mohamed, Shady
    Nahavandi, Saeid
    2012 9TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2012, : 1539 - 1542
  • [25] Bayesian analysis of spectral mixture data using Markov chain Monte Carlo methods
    Moussaoui, S
    Carteret, C
    Brie, D
    Mohammad-Djafari, A
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2006, 81 (02) : 137 - 148
  • [26] Biomass Hydrothermal Carbonization: Markov-Chain Monte Carlo Data Analysis and Modeling
    Gallifuoco, Alberto
    Papa, Alessandro Antonio
    Taglieri, Luca
    FRONTIERS IN CHEMICAL ENGINEERING, 2021, 3
  • [27] Population Markov Chain Monte Carlo
    Laskey, KB
    Myers, JW
    MACHINE LEARNING, 2003, 50 (1-2) : 175 - 196
  • [28] Monte Carlo integration with Markov chain
    Tan, Zhiqiang
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (07) : 1967 - 1980
  • [29] Population Markov Chain Monte Carlo
    Kathryn Blackmond Laskey
    James W. Myers
    Machine Learning, 2003, 50 : 175 - 196
  • [30] On nonlinear Markov chain Monte Carlo
    Andrieu, Christophe
    Jasra, Ajay
    Doucet, Arnaud
    Del Moral, Pierre
    BERNOULLI, 2011, 17 (03) : 987 - 1014