Frobenius groups of automorphisms with almost fixed point free kernel

被引:0
作者
Ercan, Gulin [1 ]
Guloglu, Ismail S. [2 ]
机构
[1] Middle East Tech Univ, Dept Math, Ankara, Turkey
[2] Dogus Univ, Dept Math, Istanbul, Turkey
关键词
Solvable group; Automorphism; Fitting length; Frobenius group;
D O I
10.1016/j.jalgebra.2018.12.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let FH be a Frobenius group with kernel F and complement H, acting coprimely on the finite solvable group G by automorphisms. We prove that if C-G(H) is of Fitting length n then the index of the n-th Fitting subgroup F-n(G) in G is bounded in terms of vertical bar C-G(F)vertical bar and vertical bar F vertical bar. This generalizes a result of Khukhro and Makarenko [6] which handles the case n = 1. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:384 / 389
页数:6
相关论文
共 11 条
[1]  
Doerk K., 1992, DEGRUYTER EXPOSITION, V4
[2]   Groups of automorphisms with TNI-centralizers [J].
Ercan, Gulin ;
Guloglu, Ismail S. .
JOURNAL OF ALGEBRA, 2018, 498 :38-46
[3]   ON CHARACTERS AND FIXED-POINTS OF COPRIME OPERATOR GROUPS [J].
HARTLEY, B ;
ISAACS, IM .
JOURNAL OF ALGEBRA, 1990, 131 (01) :342-358
[4]   Finite groups and Lie rings with a metacyclic Frobenius group of automorphisms [J].
Khukhro, E. I. ;
Makarenko, N. Yu. .
JOURNAL OF ALGEBRA, 2013, 386 :77-104
[5]   Fitting height of a finite group with a Frobenius group of automorphisms [J].
Khukhro, E. I. .
JOURNAL OF ALGEBRA, 2012, 366 :1-11
[6]   NILPOTENT LENGTH OF A FINITE GROUP ADMITTING A FROBENIUS GROUP OF AUTOMORPHISMS WITH FIXED-POINT-FREE KERNEL [J].
Khukhro, E. I. .
ALGEBRA AND LOGIC, 2011, 49 (06) :551-560
[7]   Frobenius groups of automorphisms and their fixed points [J].
Khukhro, Evgeny ;
Makarenko, Natalia ;
Shumyatsky, Pavel .
FORUM MATHEMATICUM, 2014, 26 (01) :73-112
[8]   FROBENIUS GROUPS AS GROUPS OF AUTOMORPHISMS [J].
Makarenko, N. Yu. ;
Shumyatsky, Pavel .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (10) :3425-3436
[9]  
Makarenko N. Yu., 2011, DOKL AKAD NAUK, V437, P20
[10]   GROUPS OF AUTOMORPHISMS AND CENTRALIZERS [J].
TURULL, A .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1990, 107 :227-238