apQuant: Accurate Label-Free Quantification by Quality Filtering

被引:56
作者
Doblmann, Johannes [1 ]
Dusberger, Frederico [1 ]
Imre, Richard [1 ,2 ]
Hudecz, Otto [1 ,2 ]
Stanek, Florian [1 ]
Mechtler, Karl [1 ,2 ]
Duernberger, Gerhard [1 ,2 ,3 ]
机构
[1] Vienna Bioctr VBC, Res Inst Mol Pathol IMP, Campus Vienna Bioctr 1, A-1030 Vienna, Austria
[2] Vienna Bioctr VBC, Austrian Acad Sci IMBA, Inst Mol Biotechnol, Dr Bohr Gasse 3, A-1030 Vienna, Austria
[3] Vienna Bioctr VBC, Gregor Mendel Inst Mol Plant Biol GMI, Dr Bohr Gasse 3, A-1030 Vienna, Austria
基金
奥地利科学基金会;
关键词
quantitative proteomics; mass spectrometry; label-free quantification; data analysis pipeline; computational proteomics; PEPTIDE IDENTIFICATION; MASS; PLATFORM; DRAFT; TOOL;
D O I
10.1021/acs.jproteome.8b00113
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Label-free quantification of shotgun proteomics data is a frequently used strategy, offering high dynamic range, sensitivity, and the ability to compare a high number of samples without additional labeling effort. Here, we present a bioinformatics approach that significantly improves label-free quantification results. We employ Percolator to assess the quality of quantified peptides. This allows to extract accurate and reliable quantitative results based on false discovery rate. Benchmarking our approach on previously published public data shows that it considerably outperforms currently available algorithms. apQuant is available free of charge as a node for Proteome Discoverer.
引用
收藏
页码:535 / 541
页数:7
相关论文
共 33 条
  • [1] moFF: a robust and automated approach to extract peptide ion intensities
    Argentini, Andrea
    Goeminne, Ludger J. E.
    Verheggen, Kenneth
    Hulstaert, Niels
    Staes, An
    Clement, Lieven
    Martens, Lennart
    [J]. NATURE METHODS, 2016, 13 (12) : 962 - 965
  • [2] Maximizing Peptide Identification Events in Proteomic Workflows Using Data-Dependent Acquisition (DDA)
    Bateman, Nicholas W.
    Goulding, Scott P.
    Shulman, Nicholas J.
    Gadok, Avinash K.
    Szumlinski, Karen K.
    MacCoss, Michael J.
    Wu, Christine C.
    [J]. MOLECULAR & CELLULAR PROTEOMICS, 2014, 13 (01) : 329 - 338
  • [3] The quantitative proteome of a human cell line
    Beck, Martin
    Schmidt, Alexander
    Malmstroem, Johan
    Claassen, Manfred
    Ori, Alessandro
    Szymborska, Anna
    Herzog, Franz
    Rinner, Oliver
    Ellenberg, Jan
    Aebersold, Ruedi
    [J]. MOLECULAR SYSTEMS BIOLOGY, 2011, 7
  • [4] Accurate Proteome-wide Label-free Quantification by Delayed Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ
    Cox, Juergen
    Hein, Marco Y.
    Luber, Christian A.
    Paron, Igor
    Nagaraj, Nagarjuna
    Mann, Matthias
    [J]. MOLECULAR & CELLULAR PROTEOMICS, 2014, 13 (09) : 2513 - 2526
  • [5] Andromeda: A Peptide Search Engine Integrated into the MaxQuant Environment
    Cox, Juergen
    Neuhauser, Nadin
    Michalski, Annette
    Scheltema, Richard A.
    Olsen, Jesper V.
    Mann, Matthias
    [J]. JOURNAL OF PROTEOME RESEARCH, 2011, 10 (04) : 1794 - 1805
  • [6] MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification
    Cox, Juergen
    Mann, Matthias
    [J]. NATURE BIOTECHNOLOGY, 2008, 26 (12) : 1367 - 1372
  • [7] The ProteomeXchange consortium in 2017: supporting the cultural change in proteomics public data deposition
    Deutsch, Eric W.
    Csordas, Attila
    Sun, Zhi
    Jarnuczak, Andrew
    Perez-Riverol, Yasset
    Ternent, Tobias
    Campbell, David S.
    Bernal-Llinares, Manuel
    Okuda, Shujiro
    Kawano, Shin
    Moritz, Robert L.
    Carver, Jeremy J.
    Wang, Mingxun
    Ishihama, Yasushi
    Bandeira, Nuno
    Hermjakob, Henning
    Vizcaino, Juan Antonio
    [J]. NUCLEIC ACIDS RESEARCH, 2017, 45 (D1) : D1100 - D1106
  • [8] MS Amanda, a Universal Identification Algorithm Optimized for High Accuracy Tandem Mass Spectra
    Dorfer, Viktoria
    Pichler, Peter
    Stranzl, Thomas
    Stadlmann, Johannes
    Taus, Thomas
    Winkler, Stephan
    Mechtler, Karl
    [J]. JOURNAL OF PROTEOME RESEARCH, 2014, 13 (08) : 3679 - 3684
  • [9] Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry
    Elias, Joshua E.
    Gygi, Steven P.
    [J]. NATURE METHODS, 2007, 4 (03) : 207 - 214
  • [10] PEPPeR, a platform for experimental proteomic pattern recognition
    Jaffe, Jacob D.
    Mani, D. R.
    Leptos, Kyriacos C.
    Church, George M.
    Gillette, Michael A.
    Carr, Steven A.
    [J]. MOLECULAR & CELLULAR PROTEOMICS, 2006, 5 (10) : 1927 - 1941