Multiscale Hidden Markov Model applied to ECG segmentation

被引:0
作者
Graja, S [1 ]
Boucher, JM [1 ]
机构
[1] ENST Bretagne, INSERM ERT 02, F-29285 Brest, France
来源
2003 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING, PROCEEDINGS: FROM CLASSICAL MEASUREMENT TO COMPUTING WITH PERCEPTIONS | 2003年
关键词
ECG; Hidden Markov Model; Wavelet Tree; segmentation;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A new electrocardiogram (ECG) segmentation method is proposed, which uses a Wavelet Tree Hidden Markov Model. The principle of this approach is, on one hand, to use wavelet coefficients to characterize the different ECG waves, and, on the other hand. to link these coefficients by a tree structure permitting to detect wave changes. By associating this method to a fusion method between scales based on the context concept, good results are obtained on a special database created for risk analysis of atrial fibrillation, particularly in P wave segmentation.
引用
收藏
页码:105 / 109
页数:5
相关论文
共 50 条
  • [41] Hidden Markov Model-based Heartbeat Detector Using Different Transformations of ECG and ABP Signals
    Monroy, Nelson F.
    Altuve, Miguel
    15TH INTERNATIONAL SYMPOSIUM ON MEDICAL INFORMATION PROCESSING AND ANALYSIS, 2020, 11330
  • [42] Detection of Apnea Bradycardia from ECG Signals of Preterm Infants Using Layered Hidden Markov Model
    Azadeh Sadoughi
    Mohammad Bagher Shamsollahi
    Emad Fatemizadeh
    Alain Beuchée
    Alfredo I. Hernández
    Nasim Montazeri Ghahjaverestan
    Annals of Biomedical Engineering, 2021, 49 : 2159 - 2169
  • [43] Machine condition change detection based on data segmentation using a three-regime, stable Hidden Markov Model
    Janczura, Joanna
    Barszcz, Tomasz
    Zimroz, Radoslaw
    Wylomanska, Agnieszka
    MEASUREMENT, 2023, 220
  • [44] Uncovering Hidden Spatial Patterns by Hidden Markov Model
    Huang, Ruihong
    Kennedy, Christina
    GEOGRAPHIC INFORMATION SCIENCE, 2008, 5266 : 70 - 89
  • [45] Detection of Apnea Bradycardia from ECG Signals of Preterm Infants Using Layered Hidden Markov Model
    Sadoughi, Azadeh
    Shamsollahi, Mohammad Bagher
    Fatemizadeh, Emad
    Beuchee, Alain
    Hernandez, Alfredo, I
    Ghahjaverestan, Nasim Montazeri
    ANNALS OF BIOMEDICAL ENGINEERING, 2021, 49 (09) : 2159 - 2169
  • [46] Fuzzy C-means Clustering Image Segmentation Algorithm Based on Hidden Markov Model
    Ru Xu
    Mobile Networks and Applications, 2022, 27 : 946 - 954
  • [47] Fuzzy C-means Clustering Image Segmentation Algorithm Based on Hidden Markov Model
    Xu, Ru
    MOBILE NETWORKS & APPLICATIONS, 2022, 27 (03) : 946 - 954
  • [48] Segmentation of brain tumors in 4D MR images using the hidden Markov model
    Solomon, Jeffrey
    Butman, John A.
    Sood, Arun
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2006, 84 (2-3) : 76 - 85
  • [49] FMRI Image Segmentation Based on Hidden Markov Random Field with Directional Statistics Observation Model
    Chernyaev, S. D.
    Lukashenko, O., V
    TWELFTH INTERNATIONAL CONFERENCE ON MACHINE VISION (ICMV 2019), 2020, 11433
  • [50] Hidden Markov model with missing emissions
    Elkimakh, Karima
    Nasroallah, Abdelaziz
    COMPUTATIONAL STATISTICS, 2024, 39 (02) : 385 - 403