Multiscale Hidden Markov Model applied to ECG segmentation

被引:0
作者
Graja, S [1 ]
Boucher, JM [1 ]
机构
[1] ENST Bretagne, INSERM ERT 02, F-29285 Brest, France
来源
2003 IEEE INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING, PROCEEDINGS: FROM CLASSICAL MEASUREMENT TO COMPUTING WITH PERCEPTIONS | 2003年
关键词
ECG; Hidden Markov Model; Wavelet Tree; segmentation;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A new electrocardiogram (ECG) segmentation method is proposed, which uses a Wavelet Tree Hidden Markov Model. The principle of this approach is, on one hand, to use wavelet coefficients to characterize the different ECG waves, and, on the other hand. to link these coefficients by a tree structure permitting to detect wave changes. By associating this method to a fusion method between scales based on the context concept, good results are obtained on a special database created for risk analysis of atrial fibrillation, particularly in P wave segmentation.
引用
收藏
页码:105 / 109
页数:5
相关论文
共 50 条
  • [31] Markov Financial Model Using Hidden Markov Model
    Luc Tri Tuyen
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2013, 40 (10): : 72 - 83
  • [32] A hidden Markov model for describing turbostratic disorder applied to carbon blacks and graphene
    Hart, Allen G.
    Hansen, Thomas C.
    Kuhs, Werner F.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2019, 75 : 501 - 516
  • [33] A neural network model of hidden markov model applied to the auditory periphery for speech processing and recognition
    Ye, DT
    Songhua
    Ying, LX
    Krishnan, SM
    PROCEEDINGS OF THE 19TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOL 19, PTS 1-6: MAGNIFICENT MILESTONES AND EMERGING OPPORTUNITIES IN MEDICAL ENGINEERING, 1997, 19 : 1371 - 1376
  • [34] Automatic Classification of Heartbeats Using ECG Signals via Higher Order Hidden Markov Model
    Liao, Ying
    Xiang, Yisha
    Du, Dongping
    2020 IEEE 16TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2020, : 69 - 74
  • [35] Video segmentation by Hidden Markov Model using multimodal MPEG-7 descriptors
    Bae, TM
    Jin, SH
    Choo, JH
    Park, M
    Ro, YM
    Kim, HR
    Kang, K
    INTERNET IMAGING V, 2004, 5304 : 214 - 223
  • [36] Neural Hidden Markov Model
    Lin, Zuoquan
    Song, Jiehu
    AGENTS AND ARTIFICIAL INTELLIGENCE, ICAART 2019, 2019, 11978 : 37 - 54
  • [37] A modified hidden Markov model
    van der Hoek, John
    Elliott, Robert J.
    AUTOMATICA, 2013, 49 (12) : 3509 - 3519
  • [38] NONSTATIONARY HIDDEN MARKOV MODEL
    SIN, B
    KIM, JH
    SIGNAL PROCESSING, 1995, 46 (01) : 31 - 46
  • [39] Hidden Markov measure field models for image segmentation
    Marroquin, JL
    Santana, EA
    Botello, S
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2003, 25 (11) : 1380 - 1387
  • [40] A hidden Markov model for the analysis of cylindrical time series
    Lagona, Francesco
    Picone, Marco
    Maruotti, Antonello
    ENVIRONMETRICS, 2015, 26 (08) : 534 - 544