A polynomial version of Sarnak's conjecture

被引:10
|
作者
Eisner, Tanja [1 ]
机构
[1] Univ Leipzig, Inst Math, D-04009 Leipzig, Germany
关键词
ERGODIC AVERAGES; MOBIUS FUNCTION; CONVERGENCE; BEHAVIOR; THEOREMS;
D O I
10.1016/j.crma.2015.04.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by the variations of Sarnak's conjecture due to El Abdalaoui, Kulaga-Przymus, Lemanczyk, de la Rue and by the observation that the Mobius function is a good weight (with limit zero) for the polynomial pointwise ergodic theorem, we introduce a polynomial version of the Sarnak conjecture for minimal systems. (C) 2015 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:569 / 572
页数:4
相关论文
共 50 条
  • [41] ON DANCER'S CONJECTURE FOR STABLE SOLUTIONS WITH SIGN-CHANGING NONLINEARITY
    Liu, Yong
    Wang, Kelei
    Wei, Juncheng
    Wu, Ke
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (08) : 3485 - 3497
  • [42] Does payoff equity facilitate coordination? A test of Schelling's conjecture
    Lopez-Perez, Raul
    Pinter, Agnes
    Kiss, Hubert J.
    JOURNAL OF ECONOMIC BEHAVIOR & ORGANIZATION, 2015, 117 : 209 - 222
  • [43] Anticoncentration in Ramsey graphs and a proof of the Erdős-McKay conjecture
    Kwan, Matthew
    Sah, Ashwin
    Sauermann, Lisa
    Sawhney, Mehtaab
    FORUM OF MATHEMATICS PI, 2023, 11
  • [44] Irwin's conjecture: Crack shape adaptability in transversely isotropic solids
    Laubie, Hadrien
    Ulm, Franz-Josef
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2014, 68 : 1 - 13
  • [45] A GENERAL MULTIPARAMETER VERSION OF GNEDENKO'S TRANSFER THEOREM
    Kern, P.
    THEORY OF PROBABILITY AND ITS APPLICATIONS, 2016, 60 (01) : 134 - U240
  • [46] A discretized version of Krylov's estimate and its applications
    Zhang, Xicheng
    ELECTRONIC JOURNAL OF PROBABILITY, 2019, 24
  • [47] Patient's willingness to opt for external cephalic version
    Vlemmix, Floortje
    Kuitert, Marjon
    Bais, Joke
    Opmeer, Brent
    van der Post, Joris
    Mol, Ben Willem
    Kok, Marjolein
    JOURNAL OF PSYCHOSOMATIC OBSTETRICS & GYNECOLOGY, 2013, 34 (01) : 15 - 21
  • [48] Convergence of discrete analogues of a generalization of J.R. Haddock's conjecture
    Wei, Zhijian
    Huang, Lihong
    Hu, Sihu
    APPLIED MATHEMATICS LETTERS, 2006, 19 (12) : 1395 - 1398
  • [49] TREND TO EQUILIBRIUM FOR THE BECKER-DOING EQUATIONS: AN ANALOGUE OF CERCIGNANI'S CONJECTURE
    Canizo, Jose A.
    Einav, Amit
    Lods, Bertrand
    ANALYSIS & PDE, 2017, 10 (07): : 1663 - 1708
  • [50] A NONLINEAR VERSION OF HALANAY'S INEQUALITY FOR THE UNIFORM CONVERGENCE TO THE ORIGIN
    Pepe, Pierdomenico
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2022, 12 (03) : 789 - 811