A polynomial version of Sarnak's conjecture

被引:10
|
作者
Eisner, Tanja [1 ]
机构
[1] Univ Leipzig, Inst Math, D-04009 Leipzig, Germany
关键词
ERGODIC AVERAGES; MOBIUS FUNCTION; CONVERGENCE; BEHAVIOR; THEOREMS;
D O I
10.1016/j.crma.2015.04.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by the variations of Sarnak's conjecture due to El Abdalaoui, Kulaga-Przymus, Lemanczyk, de la Rue and by the observation that the Mobius function is a good weight (with limit zero) for the polynomial pointwise ergodic theorem, we introduce a polynomial version of the Sarnak conjecture for minimal systems. (C) 2015 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:569 / 572
页数:4
相关论文
共 50 条
  • [1] Polynomial mean complexity and logarithmic Sarnak conjecture
    Huang, Wen
    Xu, Leiye
    Ye, Xiangdong
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2024, 44 (03) : 769 - 798
  • [2] Sarnak's Conjecture: What's New
    Ferenczi, Sebastien
    Kulaga-Przymus, Joanna
    Lemanczyk, Mariusz
    ERGODIC THEORY AND DYNAMICAL SYSTEMS IN THEIR INTERACTIONS WITH ARITHMETICS AND COMBINATORICS, 2018, 2213 : 163 - 235
  • [3] Sarnak?s Conjecture for nilsequences on arbitrary number fields and applications
    Sun, Wenbo
    ADVANCES IN MATHEMATICS, 2023, 415
  • [4] The logarithmic Sarnak conjecture for ergodic weights
    Frantzikinakis, Nikos
    Host, Bernard
    ANNALS OF MATHEMATICS, 2018, 187 (03) : 869 - 931
  • [5] On Sarnak's conjecture and Veech's question for interval exchanges
    Ferenczi, Sebastien
    Mauduit, Christian
    JOURNAL D ANALYSE MATHEMATIQUE, 2018, 134 (02): : 545 - 573
  • [6] Acounter-example for polynomial version ofSarnak's conjecture
    Lian, Zhengxing
    Shi, Ruxi
    ADVANCES IN MATHEMATICS, 2021, 384
  • [7] Odometers and Toeplitz systems revisited in the context of Sarnak's conjecture
    Downarowicz, Tomasz
    Kasjan, Stanislaw
    STUDIA MATHEMATICA, 2015, 229 (01) : 45 - 72
  • [8] Sarnak's conjecture for sequences of almost quadratic word growth
    Mcnamara, Redmond
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2021, 41 (10) : 3060 - 3115
  • [9] Oscillating sequences, MMA and MMLS flows and Sarnak's conjecture
    Fan, Ai-Hua
    Jiang, Yunping
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2018, 38 : 1709 - 1744
  • [10] AUTOMATIC SEQUENCES FULFILL THE SARNAK CONJECTURE
    Muellner, Clemens
    DUKE MATHEMATICAL JOURNAL, 2017, 166 (17) : 3219 - 3290