Redox regulation of signal transduction in cardiac and smooth muscle

被引:134
作者
Suzuki, YJ
Ford, GD
机构
[1] Tufts Univ, USDA, Human Nutr Res Ctr Aging, Antioxidants Res Lab, Boston, MA 02111 USA
[2] Virginia Commonwealth Univ, Med Coll Virginia, Dept Physiol, Richmond, VA 23298 USA
关键词
calcium; cell signaling; reactive oxygen species; ryanodine receptor; sarcoplasmic reticulum; superoxide;
D O I
10.1006/jmcc.1998.0872
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
In addition to the well-known property of reactive oxygen species (ROS) to cause non-specific cellular damage. the potential role of ROS in regulation of signal transduction has been recognized. Studies of vascular smooth muscle cells strongly suggest that ROS are required for cell growth signaling. The IP3-induced Ca2+ release from vascular smooth muscle can be selectively stimulated by ROS which may enhance signal transduction for muscle contraction and gene expression. The subunit-subunit contact within the ryanodine receptor complex, as well as intermolecular interactions between the ryanodine receptor and triadin, are redox sensitive, suggesting that ROS may regulate cardiac muscle Ca2+-signaling events. The biochemistry of ROS and thiol regulation may allow for specific interactions between ROS and target molecules during redox regulation. (C) 1999 Academic Press.
引用
收藏
页码:345 / 353
页数:9
相关论文
共 72 条
[1]   Big mitogen-activated protein kinase 1 (BMK1) is a redox-sensitive kinase [J].
Abe, J ;
Kusuhara, M ;
Ulevitch, RJ ;
Berk, BC ;
Lee, JD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (28) :16586-16590
[2]   HEAVY-METALS INDUCE RAPID CALCIUM RELEASE FROM SARCOPLASMIC-RETICULUM VESICLES ISOLATED FROM SKELETAL-MUSCLE [J].
ABRAMSON, JJ ;
TRIMM, JL ;
WEDEN, L ;
SALAMA, G .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1983, 80 (06) :1526-1530
[3]  
ABRAMSON JJ, 1988, MOL CELL BIOCHEM, V82, P81
[4]   CRITICAL SULFHYDRYLS REGULATE CALCIUM RELEASE FROM SARCOPLASMIC-RETICULUM [J].
ABRAMSON, JJ ;
SALAMA, G .
JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 1989, 21 (02) :283-294
[5]   Multiple classes of sulfhydryls modulate the skeletal muscle Ca2+ release channel [J].
Aghdasi, B ;
Zhang, JZ ;
Wu, YL ;
Reid, MB ;
Hamilton, SL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (06) :3739-3748
[6]   MODIFICATION OF THE GATING OF THE CARDIAC SARCOPLASMIC-RETICULUM CA2+-RELEASE CHANNEL BY H2O2 AND DITHIOTHREITOL [J].
BORASO, A ;
WILLIAMS, AJ .
AMERICAN JOURNAL OF PHYSIOLOGY, 1994, 267 (03) :H1010-H1016
[7]   Modulation of iron regulatory protein functions - Further insights into the role of nitrogen- and oxygen-derived reactive species [J].
Bouton, C ;
Raveau, M ;
Drapier, JC .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (04) :2300-2306
[8]   LOCALIZATION AND PARTIAL CHARACTERIZATION OF THE OLIGOMERIC DISULFIDE-LINKED MOLECULAR-WEIGHT 95000 PROTEIN (TRIADIN) WHICH BINDS THE RYANODINE AND DIHYDROPYRIDINE RECEPTORS IN SKELETAL-MUSCLE TRIADIC VESICLES [J].
CASWELL, AH ;
BRANDT, NR ;
BRUNSCHWIG, JP ;
PURKERSON, S .
BIOCHEMISTRY, 1991, 30 (30) :7507-7513
[10]   STRUCTURE AND FUNCTION OF RYANODINE RECEPTORS [J].
CORONADO, R ;
MORRISSETTE, J ;
SUKHAREVA, M ;
VAUGHAN, DM .
AMERICAN JOURNAL OF PHYSIOLOGY, 1994, 266 (06) :C1485-C1504