Dynamic Texture Decoding Using a Neuromorphic Multilayer Tactile Sensor

被引:0
作者
Nguyen, Harrison [1 ,2 ]
Osborn, Luke [1 ]
Iskarous, Mark [1 ]
Shallal, Christopher [1 ]
Hunt, Christopher [1 ]
Betthauser, Joseph [2 ]
Thakor, Nitish [1 ,2 ,3 ]
机构
[1] Johns Hopkins Univ, Dept Biomed Engn, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Dept Elect & Comp Engn, Baltimore, MD 21218 USA
[3] Natl Univ Singapore, Singapore Inst Neurotechnol, Singapore 119077, Singapore
来源
2018 IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE (BIOCAS): ADVANCED SYSTEMS FOR ENHANCING HUMAN HEALTH | 2018年
关键词
Haptics; Tactile Sensor; Neuromorphic Model; Supervised Learning; Compressed Sensing & Sparse Recovery; LIMB; RECOGNITION; SYSTEM;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Prosthetic limbs would benefit from tactile feedback to provide sensory information when interacting with the environment, such as adjusting grasps using force feedback or palpating texture. In this work, we demonstrate how a multilayer tactile sensor can be used for palpation, and enhance the ability to discriminate between touch interfaces. Inspired by mechanoreceptors in skin, the multilayer sensor consists of multiple textile force sensing elements. The novelty of this work lies in the application of a multilayer sensor, one that produces touch receptor like (neuromorphic) output, to texture classification by using a classifier based on sparse recovery. This approach is shown to be capable of palpation, achieving classification accuracies as high as 97% on a distinct texture set. Using compressed sensing and sparse recovery, the multilayer sensor can decode texture under dynamic conditions, potentially providing amputees the ability to perceive rich haptic information while using their prosthesis.
引用
收藏
页码:627 / 630
页数:4
相关论文
共 22 条
[1]  
Betthauser Joseph L, 2017, IEEE Biomed Circuits Syst Conf, V2017, DOI 10.1109/biocas.2017.8325201
[2]   Limb Position Tolerant Pattern Recognition for Myoelectric Prosthesis Control with Adaptive Sparse Representations From Extreme Learning [J].
Betthauser, Joseph L. ;
Hunt, Christopher L. ;
Osborn, Luke E. ;
Masters, Matthew R. ;
Levay, Gyorgy ;
Kaliki, Rahul R. ;
Thakor, Nitish V. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2018, 65 (04) :770-778
[3]   Upper-limb prosthetics - Critical factors in device abandonment [J].
Biddiss, Elaine ;
Chau, Tom .
AMERICAN JOURNAL OF PHYSICAL MEDICINE & REHABILITATION, 2007, 86 (12) :977-987
[4]   Human-Inspired Neurorobotic System for Classifying Surface Textures by Touch [J].
Friedl, Ken E. ;
Voelker, Aaron R. ;
Peer, Angelika ;
Eliasmith, Chris .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2016, 1 (01) :516-523
[5]   Merkel Cells in Somatosensation [J].
Haeberle, Henry ;
Lumpkin, Ellen A. .
CHEMOSENSORY PERCEPTION, 2008, 1 (02) :110-118
[6]   Simple model of spiking neurons [J].
Izhikevich, EM .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2003, 14 (06) :1569-1572
[7]   The roles and functions of cutaneous mechanoreceptors [J].
Johnson, KO .
CURRENT OPINION IN NEUROBIOLOGY, 2001, 11 (04) :455-461
[8]   STIMULUS-RESPONSE FUNCTIONS OF RAPIDLY ADAPTING MECHANORECEPTORS IN HUMAN GLABROUS SKIN AREA [J].
KNIBESTO.M .
JOURNAL OF PHYSIOLOGY-LONDON, 1973, 232 (03) :427-452
[9]   Intraneural stimulation elicits discrimination of textural features by artificial fingertip in intact and amputee humans [J].
Oddo, Calogero Maria ;
Raspopovic, Stanisa ;
Artoni, Fiorenzo ;
Mazzoni, Alberto ;
Spigler, Giacomo ;
Petrini, Francesco ;
Giambattistelli, Federica ;
Vecchio, Fabrizio ;
Miraglia, Francesca ;
Zollo, Loredana ;
Di Pino, Giovanni ;
Camboni, Domenico ;
Carrozza, Maria Chiara ;
Guglielmelli, Eugenio ;
Rossini, Paolo Maria ;
Faraguna, Ugo ;
Micera, Silvestro .
ELIFE, 2016, 5
[10]  
Osborn L., 2017, MYOEL CONTR S U NEW, P188