Ultrathin Nanosheet-Supported Ag@Ag2O Core-Shell Nanoparticles with Vastly Enhanced Photothermal Conversion Efficiency for NIR-II-Triggered Photothermal Therapy

被引:38
作者
Li, Kunle [1 ]
Ma, Xiaotong [2 ]
Wang, Li [2 ,3 ]
Yang, Xueting [4 ]
Qu, Xiaozhong [3 ]
Zhou, Shuyun [2 ,3 ]
Xu, Baocai [1 ]
He, Shan [1 ]
Zhang, Guiju [1 ]
Guan, Shanyue [2 ]
机构
[1] Beijing Technol & Business Univ, Sch Light Ind, Beijing 100048, Peoples R China
[2] Chinese Acad Sci, Tech Inst Phys & Chem, Key Lab Photochem Convers & Optoelect Mat, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100190, Peoples R China
[4] Beijing Univ Chem Technol, State Key Lab Chem Resource Engn, Beijing 100029, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
heterostructure nanoparticle; ultrathin nanosheet; photothermal conversion efficiency; photothermal therapy; HIGHLY EFFICIENT; NANOCRYSTALS; DESIGN; OXYGEN; NANOSTRUCTURE; METHANOL; ALLOY; AG;
D O I
10.1021/acsbiomaterials.1c01291
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Photothermal therapy (PTT) working in the second near-infrared (NIR-II) region has aroused a huge interest due to its potential application in terms of clinical cancer treatment. However, owing to the lack of photothermal nanoagents with high photothermal conversion efficiency, NIR-II-driven PTT still suffers from poor efficiency and subsequent cancer recurrence. In this work, we show a new and highly efficient preparation approach for NIR-II photothermal nanoagents and tailor ultrathin layered double hydroxide (LDH)-supported Ag@Ag2O core-shell nano particles (Ag@Ag2O/LDHs-U), vastly improving NIR-II photo thermal performance. A combination study (high-resolution transmission electron microscopy (HRTEM), extended X-ray absorption fine structure spectroscopy (EXAFS), and X-ray photoelectron spectroscopy (XPS)) verifies that ultrafine Ag@Ag2O core-shell nanoparticles (similar to 3.8 nm) are highly dispersed and firmly immobilized within ultrathin LDH nanosheets, and their Ag2O shell possesses abundant vacancy-type defects. These unique Ag@Ag2O/LDHs-U display an impressive photothermal conversion efficiency as high as 76.9% at 1064 nm. Such an excellent photothermal performance is likely attributed to the enhanced localized surface plasmon resonance (LSPR) coupling effect between Ag and Ag2O and the reduced band gap caused by vacancy-type defects in the Ag2O shell. Meanwhile, Ag@Ag2O/LDHs-U also show prominent photothermal stability, due to the unique supported core-shell nanostructure. Moreover, both in vitro and in vivo studies further confirm that Ag@Ag2O/LDHs-U possess good biocompatible properties and outstanding PTT therapeutic efficacy in the NIR-II region. This research shows a new strategy in the rational design and preparation of an efficient photothermal agent, which is helpful to achieve more accurate and effective cancer theranostics.
引用
收藏
页码:540 / 550
页数:11
相关论文
共 59 条
[1]   Structural and Architectural Evaluation of Bimetallic Nanoparticles: A Case Study of Pt-Ru Core-Shell and Alloy Nanoparticles [J].
Alayoglu, Selim ;
Zavalij, Peter ;
Eichhorn, Bryan ;
Wang, Qi ;
Frenkel, Anatoly I. ;
Chupas, Peter .
ACS NANO, 2009, 3 (10) :3127-3137
[2]  
[Anonymous], 1999, HDB MONOCHROMATIC XP
[3]   Single-Atom Pd Nanozyme for Ferroptosis-Boosted Mild-Temperature Photothermal Therapy [J].
Chang, Mengyu ;
Hou, Zhiyao ;
Wang, Man ;
Yang, Chunzheng ;
Wang, Ruifeng ;
Li, Fang ;
Liu, Donglian ;
Peng, Tieli ;
Li, Chunxia ;
Lin, Jun .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2021, 60 (23) :12971-12979
[4]   A Multifunctional Cascade Bioreactor Based on Hollow-Structured Cu2MoS4 for Synergetic Cancer Chemo-Dynamic Therapy/Starvation Therapy/Phototherapy/Immunotherapy with Remarkably Enhanced Efficacy [J].
Chang, Mengyu ;
Wang, Man ;
Wang, Meifang ;
Shu, Mengmeng ;
Ding, Binbin ;
Li, Chunxia ;
Pang, Maolin ;
Cui, Shuzhong ;
Hou, Zhiyao ;
Lin, Jun .
ADVANCED MATERIALS, 2019, 31 (51)
[5]   Promoted Synergic Catalysis between Metal Ni and Acid-Base Sites toward Oxidant-Free Dehydrogenation of Alcohols [J].
Chen, Hao ;
He, Shan ;
Xu, Ming ;
Wei, Min ;
Eyans, David G. ;
Duan, Xue .
ACS CATALYSIS, 2017, 7 (04) :2735-2743
[6]   Ru-Cluster-Modified Ni Surface Defects toward Selective Bond Breaking between C-O and C-C [J].
Chen, Hao ;
He, Shan ;
Cao, Xingzhong ;
Zhang, Shitong ;
Xu, Ming ;
Pu, Min ;
Su, Dangsheng ;
Wei, Min ;
Evans, David G. ;
Duan, Xue .
CHEMISTRY OF MATERIALS, 2016, 28 (13) :4751-4761
[7]   Gold nanorods and their plasmonic properties [J].
Chen, Huanjun ;
Shao, Lei ;
Li, Qian ;
Wang, Jianfang .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (07) :2679-2724
[8]   Nanoplatform-based cascade engineering for cancer therapy [J].
Chen, Jiajie ;
Zhu, Yufang ;
Wu, Chengtie ;
Shi, Jianlin .
CHEMICAL SOCIETY REVIEWS, 2020, 49 (24) :9057-9094
[9]   Three-dimensional Ag2O/Bi5O7I p-n heterojunction photocatalyst harnessing UV-vis-NIR broad spectrum for photodegradation of organic pollutants [J].
Chen, Yannan ;
Zhu, Gangqiang ;
Hojamberdiev, Mirabbos ;
Gao, Jianzhi ;
Zhu, Runliang ;
Wang, Chenghui ;
Wei, Xiumei ;
Liu, Peng .
JOURNAL OF HAZARDOUS MATERIALS, 2018, 344 :42-54
[10]   Deep-Level Defect Enhanced Photothermal Performance of Bismuth Sulfide-Gold Heterojunction Nanorods for Photothermal Therapy of Cancer Guided by Computed Tomography Imaging [J].
Cheng, Yan ;
Chang, Yun ;
Feng, Yanlin ;
Jian, Hui ;
Tang, Zhaohui ;
Zhang, Haiyuan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (01) :246-251