Annular Region Containing all the Zeros of Lacunary-Type Polynomials

被引:2
|
作者
Kumar, A. [1 ]
Manzoor, Z. [2 ]
Zargar, B. A. [1 ]
机构
[1] Univ Kashmir, Dept Math, Srinagar 190006, India
[2] Cent Univ Kashmir, Dept Math, Ganderbal 191131, India
来源
ARMENIAN JOURNAL OF MATHEMATICS | 2022年 / 14卷 / 04期
关键词
Lacunary-type polynomial; Enestrom-Kakeya theorem; LOCATION;
D O I
10.52737/18291163-2022.14.4-1-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we find the annular region containing all the zeros of lacunary-type polynomials, whose coefficients are subjected to certain restrictions.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
  • [41] RECIPROCAL POLYNOMIALS WITH ALL BUT TWO ZEROS ON THE UNIT CIRCLE
    Kwon, D. Y.
    ACTA MATHEMATICA HUNGARICA, 2012, 134 (04) : 472 - 480
  • [42] Annulus containing all the zeros of a polynomial
    Dalal, Aseem
    Govil, N. K.
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 249 : 429 - 435
  • [43] On Annulus Containing All The Zeros Of A Polynomial
    Rathert, Nisar Ahmad
    Mattoo, Suhail Gulzar
    APPLIED MATHEMATICS E-NOTES, 2013, 13 : 155 - 159
  • [44] On annuli containing all the zeros of a polynomial
    Affane-Aji, Chadia
    Biaz, Saad
    Govil, N. K.
    MATHEMATICAL AND COMPUTER MODELLING, 2010, 52 (9-10) : 1532 - 1537
  • [45] On the zeros of Hecke-type faber polynomials
    Bannai, Eiichi
    Kojima, Koji
    Miezaki, Tsuyoshi
    KYUSHU JOURNAL OF MATHEMATICS, 2008, 62 (01) : 15 - 61
  • [46] Bernstien type inequalities for polynomials with restricted zeros
    Wali, S. L.
    Shah, W. M.
    JOURNAL OF ANALYSIS, 2021, 29 (04): : 1083 - 1091
  • [47] Zeros of Sobolev orthogonal polynomials of Gegenbauer type
    Groenevelt, WGM
    JOURNAL OF APPROXIMATION THEORY, 2002, 114 (01) : 115 - 140
  • [48] Bernstien type inequalities for polynomials with restricted zeros
    S. L. Wali
    W. M. Shah
    The Journal of Analysis, 2021, 29 : 1083 - 1091
  • [49] Zeros of Sobolev orthogonal polynomials of Hermite type
    de Bruin, MG
    Groenevelt, WGM
    Meijer, HG
    APPLIED MATHEMATICS AND COMPUTATION, 2002, 132 (01) : 135 - 166
  • [50] Zeros of a class of Fibonacci-type polynomials
    Wang, Y
    He, MF
    FIBONACCI QUARTERLY, 2004, 42 (04): : 341 - 347