Anderson-Bernoulli Localization at Large Disorder on the 2D Lattice

被引:3
作者
Li, Linjun [1 ]
机构
[1] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
关键词
DIFFUSION; ABSENCE; PROOF; MODEL;
D O I
10.1007/s00220-022-04366-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the Anderson model at large disorder on Z(2) where the potential has a symmetric Bernoulli distribution. We prove that Anderson localization happens outside a small neighborhood of finitely many energies. These finitely many energies are Dirichlet eigenvalues of the minus Laplacian restricted on some finite subsets of Z(2).
引用
收藏
页码:151 / 214
页数:64
相关论文
共 22 条
[1]   SHARPNESS OF THE PHASE-TRANSITION IN PERCOLATION MODELS [J].
AIZENMAN, M ;
BARSKY, DJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 108 (03) :489-526
[2]  
Aizenman M., 2015, Random Operators, VVolume 168
[3]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[4]  
[Anonymous], 2008, Panor. Syntheses
[5]   On localization in the continuous Anderson-Bernoulli model in higher dimension [J].
Bourgain, J ;
Kenig, CE .
INVENTIONES MATHEMATICAE, 2005, 161 (02) :389-426
[6]   ANDERSON-BERNOULLI MODELS [J].
Bourgain, J. .
MOSCOW MATHEMATICAL JOURNAL, 2005, 5 (03) :523-536
[7]  
Buhovsky L., 2017, ARXIV171207902
[8]   ANDERSON LOCALIZATION FOR BERNOULLI AND OTHER SINGULAR POTENTIALS [J].
CARMONA, R ;
KLEIN, A ;
MARTINELLI, F .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 108 (01) :41-66
[9]   Localization near the edge for the Anderson Bernoulli model on the two dimensional lattice [J].
Ding, Jian ;
Smart, Charles K. .
INVENTIONES MATHEMATICAE, 2020, 219 (02) :467-506
[10]   ABSENCE OF DIFFUSION IN THE ANDERSON TIGHT-BINDING MODEL FOR LARGE DISORDER OR LOW-ENERGY [J].
FROHLICH, J ;
SPENCER, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 88 (02) :151-184