Growth mechanism of multilayer-graphene-capped, vertically aligned multiwalled carbon nanotube arrays

被引:7
作者
Matsuoka, Yuki [1 ]
Clark, Ian T. [1 ]
Yoshimura, Masamichi [1 ]
机构
[1] Toyota Technol Inst, Grad Sch Engn, Tempaku Ku, Nagoya, Aichi 4688511, Japan
来源
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B | 2011年 / 29卷 / 06期
关键词
carbon nanotubes; catalysis; chemical vapour deposition; composite materials; crystal morphology; graphene; multilayers; nanofabrication; Raman spectra; scanning electron microscopy; thin films; transmission electron microscopy; CHEMICAL-VAPOR-DEPOSITION; THERMAL-CONDUCTIVITY; LAYER GRAPHENE; TEMPERATURE; FORESTS; FILMS;
D O I
10.1116/1.3644494
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The authors describe a rigorous investigation of the growth mechanism of composite structures consisting of graphene multilayers supported by vertically aligned multiwalled carbon nanotubes (VA-MWCNTs). The synthesis was performed via chemical vapor deposition with ethanol as a carbon source and iron films ranging in thickness from 1 to 9 nm as the catalyst. The morphology of grown films was investigated using scanning electron microscopy and transmission electron microscopy (TEM), and the crystallinity was studied using TEM and Raman spectroscopy. Thicker Fe films (8 or 9 nm) yielded composite structures, thin Fe films (1 to 4 nm) produced pure VA-MWCNTs, and Fe layers between 5 and 7 nm produced an intermediate structure composed of bundles of VA-MWCNTs fused together at their tips. The authors present growth mechanisms for all three structures. The authors attribute the change from VA-MWCNT to intermediate/composite with higher Fe film thicknesses to the formation of graphitic layers at the initial growth stage. (C) 2011 American Vacuum Society. [DOI: 10.1116/1.3644494]
引用
收藏
页数:7
相关论文
共 39 条
[1]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[2]   Controlling the morphology of carbon nanotnbe films by varying the areal density of catalyst nanoclusters using block-copolymer micellar thin films [J].
Bennett, Ryan D. ;
Hart, Anastasios J. ;
Cohen, Robert E. .
ADVANCED MATERIALS, 2006, 18 (17) :2274-+
[3]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[4]   Thermal and Electronic Properties of Macroscopic Multi-Walled Carbon Nanotubes Blocks [J].
Castellino, M. ;
Tortello, M. ;
Bianco, S. ;
Musso, S. ;
Giorcelli, M. ;
Pavese, M. ;
Gonnelli, R. S. ;
Tagliaferro, A. .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2010, 10 (06) :3828-3833
[5]   Diameter-controlled synthesis of carbon nanotubes [J].
Cheung, CL ;
Kurtz, A ;
Park, H ;
Lieber, CM .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (10) :2429-2433
[6]   Modeling the melting of supported clusters [J].
Ding, F ;
Rosén, A ;
Curtarolo, S ;
Bolton, K .
APPLIED PHYSICS LETTERS, 2006, 88 (13)
[7]   Raman spectroscopy of carbon nanotubes [J].
Dresselhaus, MS ;
Dresselhaus, G ;
Saito, R ;
Jorio, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2005, 409 (02) :47-99
[8]   Optical Study on Electronic Transport Properties of Single-Walled Carbon Nanotubes at High Temperature [J].
Effendi, Mukhtar ;
Yokoi, Hiroyuki ;
Kuroda, Noritaka .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2010, 10 (06) :4074-4077
[9]  
EIZENBERG M, 1979, SURF SCI, V82, P228, DOI 10.1016/0039-6028(79)90330-3
[10]   Hidden features of the catalyst nanoparticles favorable for single-walled carbon nanotube growth [J].
Harutyunyan, Avetik R. ;
Mora, Elena ;
Tokune, Toshio ;
Bolton, Kim ;
Rosen, Arne ;
Jiang, Aiqin ;
Awasthi, Neha ;
Curtarolo, Stefano .
APPLIED PHYSICS LETTERS, 2007, 90 (16)