high-frequency radar;
direction finding;
ocean surface current retrieval;
DOA estimation error;
antenna calibration;
antenna pattern distortion;
SURFACE CURRENT MEASUREMENTS;
HIGH-FREQUENCY RADARS;
CODAR SEASONDE;
CURRENTS;
VALIDATION;
PERFORMANCE;
STRAIT;
WERA;
SEA;
D O I:
10.3390/rs9121285
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
High-frequency (HF) radars are routinely used for remotely sensing ocean surface currents. However, the performance of the most widely used direction-finding HF radar is degraded due to the effect of the inevitable deviations of actual antenna pattern on the direction of arrival (DOA) estimation. In this paper, we quantify the DOA estimation error resulting from the deviation of the actual antenna pattern from the ideal one. Theoretical analysis and field experiment results suggest that the ratio of the deviations for the two loops dominates the DOA estimation error. Thus, eliminating the effect of the antenna pattern deviations on DOA estimation error is transformed into eliminating the effect of this ratio. From this, a calibration method based on the time-averaged local spatial coverage rate (TLSCR) is proposed to reduce the effect of the antenna pattern deviations on current extraction, which uses the ideal antenna pattern to estimate the DOA of the echoes. To validate this proposed calibration method, we assess the radar-derived radial velocities by comparing with in situ observations. The comparison results indicate that the proposed TLSCR calibration method can effectively reduce the DOA estimation error and improve the performance of the direction-finding HF radar in current observation.