Direct numerical simulation of passive scalar in decaying compressible turbulence

被引:6
作者
Li, XL [1 ]
Fu, DX [1 ]
Ma, YW [1 ]
机构
[1] Chinese Acad Sci, Inst Mech, State Key Nonlinear Mech, Beijing 100080, Peoples R China
来源
SCIENCE IN CHINA SERIES G-PHYSICS MECHANICS & ASTRONOMY | 2004年 / 47卷 / 01期
基金
中国国家自然科学基金;
关键词
passive scalar; decaying compressible turbulence; direct numerical simulation;
D O I
10.1360/03yw0029
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The passive scalars in the decaying compressible turbulence with the initial Reynolds number (defined by Taylor scale and RMS velocity) Re=72, the initial turbulent Mach numbers (defined by RMS velocity and mean sound speed) Mt=0.2-0.9, and the Schmidt numbers of passive scalar Sc=2-10 are numerically simulated by using a 7th order upwind difference scheme and 8th order group velocity control scheme. The computed results are validated with different numerical methods and different mesh sizes. The Batchelor scaling with k(-1) range is found in scalar spectra. The passive scalar spectra decay faster with the increasing turbulent Mach number. The extended self-similarity (ESS) is found in the passive scalar of compressible turbulence.
引用
收藏
页码:52 / 63
页数:12
相关论文
共 10 条
[1]   EXTENDED SELF-SIMILARITY IN TURBULENT FLOWS [J].
BENZI, R ;
CILIBERTO, S ;
TRIPICCIONE, R ;
BAUDET, C ;
MASSAIOLI, F ;
SUCCI, S .
PHYSICAL REVIEW E, 1993, 48 (01) :R29-R32
[2]   Direct numerical simulations of passive scalars with Pr>1 advected by turbulent flow [J].
Bogucki, D ;
Domaradzki, JA ;
Yeung, PK .
JOURNAL OF FLUID MECHANICS, 1997, 343 :111-130
[3]  
FU DX, 1994, COMPUTATIONAL AERODY
[4]   Direct numerical simulation of compressible isotropic turbulence [J].
Li, XL ;
Fu, DX ;
Ma, YW .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2002, 45 (11) :1452-1460
[5]  
LI XL, 2002, P 11 C COMP FLUID DY, P123
[6]   Direct numerical simulation: A tool in turbulence research [J].
Moin, P ;
Mahesh, K .
ANNUAL REVIEW OF FLUID MECHANICS, 1998, 30 :539-578
[7]   Direct numerical simulation of decaying compressible turbulence and shocklet statistics [J].
Samtaney, R ;
Pullin, DI ;
Kosovic, B .
PHYSICS OF FLUIDS, 2001, 13 (05) :1415-1430
[8]   Direct numerical simulation of differential diffusion with Schmidt numbers up to 4.0 [J].
Yeung, PK ;
Sykes, MC ;
Vedula, P .
PHYSICS OF FLUIDS, 2000, 12 (06) :1601-1604
[9]  
Zhou HB, 2003, SCI CHINA SER E, V46, P209
[10]   Dependence of turbulent scalar flux on molecular Prandtl number [J].
Zhou, HB ;
Cui, GX ;
Zhang, ZS ;
Shao, L .
PHYSICS OF FLUIDS, 2002, 14 (07) :2388-2394