Elongational viscosity of LDPE with various structures: employing a new evolution equation in MSF theory

被引:27
作者
Abbasi, Mahdi [1 ]
Ebrahimi, Nadereh Golshan [1 ]
Nadali, Mahdi [1 ]
Esfahani, Masood Khabazian [1 ]
机构
[1] Tarbiat Modares Univ, Dept Chem Engn, Polymer Grp, Tehran, Iran
关键词
Molecular stress function theory (MSF); LDPE; Cayley tree; Comb; Extensional flow; LOW-DENSITY POLYETHYLENE; STRESS FUNCTION MODEL; MONODISPERSE POLYSTYRENE MELTS; POLYMER MELTS; MOLECULAR-STRUCTURE; CONSTITUTIVE-EQUATIONS; ENTANGLED POLYMERS; NONLINEAR RHEOLOGY; EXTENSIONAL FLOWS; BRANCHED POLYMERS;
D O I
10.1007/s00397-011-0572-z
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Molecular stress function theory with new strain energy function is used to analyze transient extensional viscosity data of seven low-density polyethylene (LDPE) melts with various molecular structures as published by Stadler et al. (Rheol Acta 48:479-490, 2009) Pivokonsky et al. (J Non Newton Fluid Mech 135:58-67, 2006) and Wagner et al. (J Rheol 47(3):779-793, 2003). The new strain energy function has three nonlinear viscoelastic material parameters and assumes that the total stored energy of a branched molecule is given by different backbone and side chains stretching. The model parameters have been fitted for each LDPE in order to correlate with the supposed macromolecular structure expected from the type of synthesis. Most probable molecular structures for these LDPEs are comb and Cayley tree structures for respectively low- and high-molecular weight parts.
引用
收藏
页码:163 / 177
页数:15
相关论文
共 47 条
[1]   Extensional viscosity in uniaxial extension and contraction flow-Comparison of experimental methods and application of the molecular stress function model [J].
Aho, Johanna ;
Rolon-Garrido, Victor H. ;
Syrjala, Seppo ;
Wagner, Manfred H. .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2010, 165 (5-6) :212-218
[2]   Theoretical linear and nonlinear rheology of symmetric treelike polymer melts [J].
Blackwell, RJ ;
Harlen, OG ;
McLeish, TCB .
MACROMOLECULES, 2001, 34 (08) :2579-2596
[3]  
DEALY M, 2006, STRUCTURE RHEOLOGY M
[4]  
Doi M., 1986, THEORY POLYM DYNAMIC
[5]   Predicting low density polyethylene melt rheology in elongational and shear flows with "pom-pom" constitutive equations [J].
Inkson, NJ ;
McLeish, TCB ;
Harlen, OG ;
Groves, DJ .
JOURNAL OF RHEOLOGY, 1999, 43 (04) :873-896
[6]   Molecular stress function theory and analysis of branching structure in industrial polyolefins [J].
Kheirandish, Saeid ;
Stadlbauer, Manfred .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2009, 98 (03) :629-637
[7]   Molecular weight distribution modeling in low-density polyethylene polymerization; impact of scission mechanisms in the case of CSTR [J].
Kim, DM ;
Busch, M ;
Hoefsloot, HCJ ;
Iedema, PD .
CHEMICAL ENGINEERING SCIENCE, 2004, 59 (03) :699-718
[8]   From linear viscoelasticity to the architecture of highly branched polyethylene [J].
Majesté, JC ;
Carrot, C ;
Stanescu, P .
RHEOLOGICA ACTA, 2003, 42 (05) :432-442
[9]  
MARRUCCI G, 1988, GAZZ CHIM ITAL, V118, P179
[10]   Interchain pressure effect in extensional flows of entangled polymer melts [J].
Marrucci, G ;
Ianniruberto, G .
MACROMOLECULES, 2004, 37 (10) :3934-3942