Infinitely many solutions for nonlinear Schrodinger equations with electromagnetic fields

被引:24
作者
Li, Gongbao [1 ]
Peng, Shuangjie [1 ]
Wang, Chunhua [1 ]
机构
[1] Huazhong Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
关键词
Contraction map; Electromagnetic fields; Nonlinear Schrodinger equations; Non-radial complex-valued solutions; SEMICLASSICAL BOUND-STATES; MULTIPLICITY; UNIQUENESS; EXISTENCE; LIMIT;
D O I
10.1016/j.jde.2011.08.038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the nonlinear Schrodinger equation with electromagnetic fields (del/i - A(vertical bar y vertical bar))(2)u + V(vertical bar y vertical bar)u = vertical bar u vertical bar(p-1)u, u : R-N bar right arrow C, where the vector A(r) = (A(1)(r), A(2)(r), ... , A(N)(r)) is such that A(j)(r) (j = 1, 2, ... , N) is a real function on R+ and V(r) is a positive function on R+, 1 < p < N+2/N-2 if N >= 3 and 1 < p < +infinity if N = 2. We prove that the equation has infinitely many non-radial complex-valued solutions under conditions (H-1) and (H-2) which are given in Section 1. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:3500 / 3521
页数:22
相关论文
共 31 条
[1]   Multiplicity results for some nonlinear Schrodinger equations with potentials [J].
Ambrosetti, A ;
Malchiodi, A ;
Secchi, S .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 159 (03) :253-271
[2]  
[Anonymous], 1997, Adv. Diff. Equats
[3]   A semilinear Schrodinger equation in the presence of a magnetic field [J].
Arioli, G ;
Szulkin, A .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2003, 170 (04) :277-295
[4]  
Bartsch T, 2006, ADV DIFFERENTIAL EQU, V11, P781
[6]   Existence and uniqueness of multi-bump bound states of nonlinear Schrodinger equations with electromagnetic fields [J].
Cao, DM ;
Tang, ZW .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 222 (02) :381-424
[7]   Semiclassical limit for nonlinear Schrodinger equations with electromagnetic fields [J].
Cingolani, S ;
Secchi, S .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 275 (01) :108-130
[8]   Semiclassical states for NLS equations with magnetic potentials having polynomial growths [J].
Cingolani, S ;
Secchi, S .
JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (05)
[9]   Intertwining semiclassical bound states to a nonlinear magnetic Schrodinger equation [J].
Cingolani, Silvia ;
Clapp, Monica .
NONLINEARITY, 2009, 22 (09) :2309-2331
[10]   MULTI-PEAK SOLUTIONS FOR MAGNETIC NLS EQUATIONS WITHOUT NON-DEGENERACY CONDITIONS [J].
Cingolani, Silvia ;
Jeanjean, Louis ;
Secchi, Simone .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2009, 15 (03) :653-675