Restoring ZSM-5 performance for catalytic fast pyrolysis of biomass: Effect of regeneration temperature

被引:32
|
作者
Yung, Matthew M. [1 ]
Starace, Anne K. [1 ]
Griffin, Michael B. [1 ]
Wells, Jonathan D. [2 ]
Patalano, Ryan E. [3 ]
Smith, Kylie R. [1 ]
Schaidle, Joshua A. [1 ]
机构
[1] Natl Renewable Energy Lab, Natl Bioenergy Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA
[2] Colorado Sch Mines, Chem & Biol Engn Dept, 1613 Illinois St, Golden, CO 80401 USA
[3] Univ Colorado, Dept Chem & Biol Engn, 3415 Colorado Ave, Boulder, CO 80303 USA
关键词
Biomass; Catalytic fast pyrolysis; ZSM-5; Regeneration; Ethylene aromatization; BIO-OIL; ZEOLITE; HZSM-5; DEACTIVATION; ADSORPTION; VAPORS;
D O I
10.1016/j.cattod.2018.06.025
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Zeolite catalysts used for biomass catalytic fast pyrolysis (CFP) deactivate rapidly, similar to a fluidized catalytic cracking (FCC) catalyst used in refining. To operate effectively when there is rapid deactivation, biomass CFP can take place in a riser FCC-style reactor in which the catalyst has a short contact time (seconds) with reactants before it is regenerated. The regeneration, therefore, has two major needs for effective operation: 1) heat balance, since the heat required for the CFP reactions is brought into the reactor by the hot catalyst and 2) relatively short (minutes) regeneration to restore the catalyst activity to be near its initial state. In order to understand effective conditions to regenerate zeolites used for CFP, a series of experiments were performed to determine the effect of regeneration temperature on the activity of ZSM-5 (SiO2/Al2O3 = 30). After use for pine pyrolysis vapor upgrading, the catalyst was oxidized in 4% O-2 at temperatures between 500-700 degrees C and reevaluated for the upgrading of pine pyrolysis vapors to assess the extent of regeneration. Additional testing was performed using ethylene aromatization as a surrogate reaction to probe regeneration efficiency. Regeneration experiments were performed for either a fixed length of time (20 min) or until there was no further CO2 measured in the effluent gas. Results from the ethylene aromatization reactions were shown to serve as an excellent surrogate for CFP reactivity and indicated that the use of model compound studies can effectively be used to understand reaction and regeneration processes from biomass CFP. Both sets of results indicate that a spent ZSM-5 used for biomass CFP could be fully regenerated at 650 degrees C and 700 degrees C within 20 min, whereas regeneration temperatures of 550 degrees C and 600 degrees C required longer regeneration temperatures and in the case of regeneration at 500 degrees C, there may be coke species that are not removed and the catalyst activity may never be fully restored. Characterization by pyridine diffuse reflectance infrared spectroscopy, thermogravimetric analysis coupled with infrared spectroscopy, and N-2 physisorption showed that higher regeneration temperatures are more effective for restoring Bronsted acid sites and catalyst mesoporosity by rapidly removing aromatic coke deposits. Additionally, regeneration at 650 degrees C and 700 degrees C led to a slightly higher total porosity as compared to the pristine catalyst, which was attributed to the formation of additional mesoporosity from catalyst steaming.
引用
收藏
页码:76 / 85
页数:10
相关论文
共 50 条
  • [21] The crucial role of clay binders in the performance of ZSM-5 based materials for biomass catalytic pyrolysis
    Hernando, Hector
    Ochoa-Hernandez, Cristina
    Shamzhy, Mariya
    Moreno, Ines
    Fermoso, Javier
    Pizarro, Patricia
    Coronado, Juan M.
    Cejka, Jiri
    Serrano, David P.
    CATALYSIS SCIENCE & TECHNOLOGY, 2019, 9 (03) : 789 - 802
  • [22] Hollow ZSM-5 encapsulated with single Ga-atoms for the catalytic fast pyrolysis of biomass waste
    Wu, Liu
    Xin, Junjie
    Wang, Yonggang
    Zhang, Kexin
    Zhang, Jiaren
    Sun, Junliang
    Zou, Ruqiang
    Liang, Jie
    JOURNAL OF ENERGY CHEMISTRY, 2023, 84 : 363 - 373
  • [23] The effects of ZSM-5 mesoporosity and morphology on the catalytic fast pyrolysis of furan
    Gou, Jinsheng
    Wang, Zhuopeng
    Li, Chao
    Qi, Xiaoduo
    Vattipalli, Vivek
    Cheng, Yu-Ting
    Huber, George
    Conner, William C.
    Dauenhauer, Paul J.
    Mountziaris, T. J.
    Fan, Wei
    GREEN CHEMISTRY, 2017, 19 (15) : 3549 - 3557
  • [24] Biomass Catalytic Pyrolysis on Ni/ZSM-5: Effects of Nickel Pretreatment and Loading
    Yung, Matthew M.
    Starace, Anne K.
    Mukarakate, Calvin
    Crow, Allison M.
    Leshnov, Marissa A.
    Magrini, Kimberly A.
    ENERGY & FUELS, 2016, 30 (07) : 5259 - 5268
  • [25] Catalytic Fast Pyrolysis of Biomass over Hierarchical Zeolites: Comparison of Mordenite, Beta, and ZSM-5
    Pinard, Ludovic
    Jia, Liangyuan
    Pichot, Nathan
    Astafan, Amir
    Dufour, Anthony
    ENERGY & FUELS, 2024, 38 (15) : 14351 - 14364
  • [26] Microwave-Assisted Catalytic Fast Pyrolysis of Biomass for Hydrocarbon Production with Physically Mixed MCM-41 and ZSM-5
    Xue, Zeyu
    Zhong, Zhaoping
    Zhang, Bo
    CATALYSTS, 2020, 10 (06)
  • [27] Experiment research on catalytic fast pyrolysis of biomass into bio-oils over Mo/ZSM-5 catalyst
    Sun L.
    Chen L.
    Zhao B.
    Yang S.
    Xie X.
    Meng F.
    Si H.
    Huagong Xuebao/CIESC Journal, 2019, 70 (08): : 3160 - 3166
  • [28] Ex Situ Catalytic Fast Pyrolysis of Lignin-Rich Digested Stillage over Na/ZSM-5, H/ZSM-5, and Fe/ZSM-5
    Priharto, Neil
    Ghysels, Stef
    Pala, Mehmet
    Opsomer, Wim
    Ronsse, Frederik
    Yildiz, Guray
    Heeres, Hero Jan
    Deuss, Peter J.
    Prins, Wolter
    ENERGY & FUELS, 2020, 34 (10) : 12710 - 12723
  • [29] Lamellar and pillared ZSM-5 zeolites modified with MgO and ZnO for catalytic fast-pyrolysis of eucalyptus woodchips
    Fermoso, Javier
    Hernando, Hector
    Jana, Prabhas
    Moreno, Ines
    Prech, Jan
    Ochoa-Hernandez, Cristina
    Pizarro, Patricia
    Coronado, Juan M.
    Cejka, Jiri
    Serrano, David P.
    CATALYSIS TODAY, 2016, 277 : 171 - 181
  • [30] Catalytic fast pyrolysis with metal-modified ZSM-5 catalysts in inert and hydrogen atmospheres
    Stanton, Alexander R.
    Iisa, Kristiina
    Yung, Matthew M.
    Magrini, Kimberly A.
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2018, 135 : 199 - 208