A Temporary Barrier Effect of the Alloy Layer During Selenization: Tailoring the Thickness of MoSe2 for Efficient Cu2ZnSnSe4 Solar Cells

被引:142
作者
Li, Jianjun [1 ]
Zhang, Yi [1 ]
Zhao, Wei [1 ]
Nam, Dahyun [2 ]
Cheong, Hyeonsik [2 ]
Wu, Li [3 ]
Zhou, Zhiqiang [1 ]
Sun, Yun [1 ]
机构
[1] Nankai Univ, Inst Photoelect Thin Film Devices & Technol, Tianjin 300071, Peoples R China
[2] Sogang Univ, Dept Phys, Seoul 121742, South Korea
[3] Nankai Univ, Sch Phys, MOE Key Lab Weak Light Nonlinear Photon, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
alloys; annealing process; CZTSe; MoSe[!sub]2[!/sub; series resistance; solar cells;
D O I
10.1002/aenm.201402178
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The influence of a prealloying process on the formation of MoSe2 and thus on the performance of Cu2ZnSnSe4 (CZTSe) solar cells is investigated using sputtering deposition and post-annealing approaches. The dense alloy layer, which is made by a low-temperature prealloying process, acts as a temporary Se diffusion barrier during a subsequent high-temperature selenization process. The formation of thick interfacial MoSe2 can be suppressed effectively by this temporary barrier, cooperating with subsequent quick formation of compact CZTSe layer. The thickness of interfacial MoSe2 layer in CZTSe solar cells can be tailored by adjusting the preannealing process during selenization. As a consequence, the series resistance of CZTSe solar cells is reduced to a low level (similar to 0.6 Omega cm(2)), and the performance of CZTSe solar cells is improved significantly. A CZTSe solar cell with efficiency of 8.7% is fabricated.
引用
收藏
页数:9
相关论文
共 30 条
[1]  
Arasimowicz M., 2013, MATER RES SOC S P, V1538, P123
[2]   Low band gap liquid-processed CZTSe solar cell with 10.1% efficiency [J].
Bag, Santanu ;
Gunawan, Oki ;
Gokmen, Tayfun ;
Zhu, Yu ;
Todorov, Teodor K. ;
Mitzi, David B. .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (05) :7060-7065
[3]   Characterization of defects in 9.7% efficient Cu2ZnSnSe4-CdS-ZnO solar cells [J].
Brammertz, G. ;
Buffiere, M. ;
Oueslati, S. ;
ElAnzeery, H. ;
Ben Messaoud, K. ;
Sahayaraj, S. ;
Koeble, C. ;
Meuris, M. ;
Poortmans, J. .
APPLIED PHYSICS LETTERS, 2013, 103 (16)
[4]   Boosting Cu2ZnSnS4 solar cells efficiency by a thin Ag intermediate layer between absorber and back contact [J].
Cui, Hongtao ;
Liu, Xiaolei ;
Liu, Fangyang ;
Hao, Xiaojing ;
Song, Ning ;
Yan, Chang .
APPLIED PHYSICS LETTERS, 2014, 104 (04)
[5]  
Fairbrother A., 2014, J PHYS CHEM C, DOI [10.1021/jp503699r, DOI 10.1021/JP503699R.]
[6]   Solar cell efficiency tables (version 44) [J].
Green, Martin A. ;
Emery, Keith ;
Hishikawa, Yoshihiro ;
Warta, Wilhelm ;
Dunlop, Ewan D. .
PROGRESS IN PHOTOVOLTAICS, 2014, 22 (07) :701-710
[7]   Solar cell efficiency tables (version 39) [J].
Green, Martin A. ;
Emery, Keith ;
Hishikawa, Yoshihiro ;
Warta, Wilhelm ;
Dunlop, Ewan D. .
PROGRESS IN PHOTOVOLTAICS, 2012, 20 (01) :12-20
[8]  
Gunawan O, 2012, APPL PHYS LETT, V100, DOI [10.1063/1.4729936, 10.1063/1.4729751]
[9]   Thin-film solar cells: Device measurements and analysis [J].
Hegedus, SS ;
Shafarman, WN .
PROGRESS IN PHOTOVOLTAICS, 2004, 12 (2-3) :155-176
[10]   Growth mechanisms of co-evaporated kesterite: a comparison of Cu-rich and Zn-rich composition paths [J].
Hsu, Wan-Ching ;
Repins, Ingrid ;
Beall, Carolyn ;
DeHart, Clay ;
To, Bobby ;
Yang, Wenbing ;
Yang, Yang ;
Noufi, Rommel .
PROGRESS IN PHOTOVOLTAICS, 2014, 22 (01) :35-43