Self-Assembled SERS Substrates with Tunable Surface Plasmon Resonances

被引:152
作者
Lee, Wonjoo [1 ]
Lee, Seung Yong [1 ]
Briber, Robert M. [1 ]
Rabin, Oded [1 ,2 ]
机构
[1] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA
[2] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA
关键词
ENHANCED RAMAN-SCATTERING; GOLD NANOPARTICLE ARRAYS; EXCITATION SPECTROSCOPY; ORDERED ARRAYS; BLOCK-COPOLYMERS; HOT-SPOTS; NANOSTRUCTURES; DIMER; GAPS; FILM;
D O I
10.1002/adfm.201101218
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The fabrication of surface-enhanced Raman spectroscopy (SERS) substrates that are optimized for use with specific laser wavelength-analyte combinations is addressed. In order to achieve large signal enhancement, temporal stability, and reproducibility over large substrate areas at low cost, only self-assembly and templating processes are employed. The resulting substrates consist of arrays of gold nanospheres with controlled diameter and spacing, properties that dictate the optical response of the structure. Tunability of the extended surface plasmon resonance is observed in the range of 520-1000 nm. It is demonstrated that the enhancement factor is maximized when the surface plasmon resonance is red-shifted with respect to the SERS instrument laser line. Despite relying on self-organization, site-to-site enhancement factor variations smaller than 10% are obtained.
引用
收藏
页码:3424 / 3429
页数:6
相关论文
共 57 条
[1]   Block copolymer templated chemistry for the formation of metallic nanoparticle arrays on semiconductor surfaces [J].
Aizawa, Masato ;
Buriak, Jillian M. .
CHEMISTRY OF MATERIALS, 2007, 19 (21) :5090-5101
[2]   A high-throughput method for controlled hot-spot fabrication in SERS-active gold nanoparticle dimer arrays [J].
Alexander, Kristen D. ;
Hampton, Meredith J. ;
Zhang, Shunping ;
Dhawan, Anuj ;
Xu, Hongxing ;
Lopez, Rene .
JOURNAL OF RAMAN SPECTROSCOPY, 2009, 40 (12) :2171-2175
[3]   BLOCK COPOLYMER THERMODYNAMICS - THEORY AND EXPERIMENT [J].
BATES, FS ;
FREDRICKSON, GH .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 1990, 41 (01) :525-557
[4]   Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals [J].
Baumberg, JJ ;
Kelf, TA ;
Sugawara, Y ;
Cintra, S ;
Abdelsalam, ME ;
Bartlett, PN ;
Russell, AE .
NANO LETTERS, 2005, 5 (11) :2262-2267
[5]   Nanostructures and nanostructured substrates for surface-enhanced Raman scattering (SERS) [J].
Brown, Richard J. C. ;
Milton, Martin J. T. .
JOURNAL OF RAMAN SPECTROSCOPY, 2008, 39 (10) :1313-1326
[6]   Controlled Plasmonic Nanostructures for Surface-Enhanced Spectroscopy and Sensing [J].
Camden, Jon P. ;
Dieringer, Jon A. ;
Zhao, Jing ;
Van Duyne, Richard P. .
ACCOUNTS OF CHEMICAL RESEARCH, 2008, 41 (12) :1653-1661
[7]   Control of nanoparticle location in block copolymers [J].
Chiu, JJ ;
Kim, BJ ;
Kramer, EJ ;
Pine, DJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (14) :5036-5037
[8]   Double-Resonance Plasmon Substrates for Surface-Enhanced Raman Scattering with Enhancement at Excitation and Stokes Frequencies [J].
Chu, Yizhuo ;
Banaee, Mohamad G. ;
Crozier, Kenneth B. .
ACS NANO, 2010, 4 (05) :2804-2810
[9]   Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss [J].
Dick, LA ;
McFarland, AD ;
Haynes, CL ;
Van Duyne, RP .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (04) :853-860
[10]   Polymer-encapsulated silver nanoparticle monomer and dimer for surface-enhanced Raman scattering [J].
Du, C. L. ;
Yang, M. X. ;
You, Y. M. ;
Chen, T. ;
Chen, H. Y. ;
Shen, Z. X. .
CHEMICAL PHYSICS LETTERS, 2009, 473 (4-6) :317-320