Robust Geometric Navigation of a Quadrotor UAV on SE(3)

被引:9
作者
Garcia, O. [1 ]
Rojo-Rodriguez, E. G. [1 ]
Sanchez, A. [2 ]
Saucedo, D. [3 ]
Munoz-Vazquez, A. J. [4 ]
机构
[1] Autonomous Univ Nuevo Leon, Fac Mech & Elect Engn, Dept Aeronaut, Aerosp Engn Res & Innovat Ctr, Apodaca, NL, Mexico
[2] CINVESTAV, Dept Aeronaut, Robot & Adv Mfg Dept, Saltillo, Coahuila, Mexico
[3] Natl Polytech Inst, UPIIG, Guanajuato, Mexico
[4] Autonomous Univ Chihuahua, Sch Engn, CONACYT, Dept Comp Sci, Campus 2, Chihuahua, Mexico
基金
芬兰科学院;
关键词
Quadrotor UAV; Geometric navigation; Guidance frame; Super twisting algorithm; SUPER TWISTING CONTROL; TRACKING CONTROL; ATTITUDE;
D O I
10.1017/S0263574719001231
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
In this paper, a robust geometric navigation algorithm, designed on the special Euclidean group SE(3), of a quadrotor is proposed. The equations of motion for the quadrotor are obtained using the Newton-Euler formulation. The geometric navigation considers a guidance frame which is designed to perform autonomous flights with a convergence to the contour of the task with small normal velocity. For this purpose, a super twisting algorithm controls the nonlinear rotational and translational dynamics as a cascade structure in order to establish the fast and yet smooth tracking with the typical robustness of sliding modes. In this sense, the controller provides robustness against parameter uncertainty, disturbances, convergence to the sliding manifold in finite time, and asymptotic convergence of the trajectory tracking. The algorithm validation is presented through experimental results showing the feasibility of the proposed approach and illustrating that the tracking errors converge asymptotically to the origin.
引用
收藏
页码:1019 / 1040
页数:22
相关论文
共 36 条
[1]   Towards a standard design model for quad-rotors: A review of current models, their accuracy and a novel simplified model [J].
Amezquita-Brooks, Luis ;
Liceaga-Castro, Eduardo ;
Gonzalez-Sanchez, Mario ;
Garcia-Salazar, Octavio ;
Martinez-Vazquez, Daniel .
PROGRESS IN AEROSPACE SCIENCES, 2017, 95 :1-23
[2]  
[Anonymous], 2011, 18th IFAC World Congress, DOI DOI 10.3182/20110828-6-IT-1002.02327
[3]  
Aubin J.-P., 2012, Differential inclusions: set-valued maps and viability theory, V264
[4]   Almost global finite-time stabilization of rigid body attitude dynamics using rotation matrices [J].
Bohn, Jan ;
Sanyal, Amit K. .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2016, 26 (09) :2008-2022
[5]  
Bouchoucha M, 2011, 2011 IEEE INT C MECH
[6]  
Bullo F., 2005, Geometric Control of Mechanical Systems: Modeling, Analysis, and Design for Simple Mechanical Control Systems
[7]   Mini-quadrotor Attitude Control based on Hybrid Backstepping & Frenet-Serret Theory [J].
Colorado, J. ;
Barrientos, A. ;
Martinez, A. ;
Lafaverges, B. ;
Valente, J. .
2010 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2010, :1617-1622
[8]  
deMarco S., 2016, IEEE 55 C DEC CONTR
[9]   Super twisting control algorithm for the attitude tracking of a four rotors UAV [J].
Derafa, L. ;
Benallegue, A. ;
Fridman, L. .
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2012, 349 (02) :685-699
[10]   Embedded Super Twisting Control for the Attitude of a Quadrotor [J].
Escobar, A. G. ;
Alazki, H. ;
Valenzuela, J. E. ;
Garcia, O. .
IEEE LATIN AMERICA TRANSACTIONS, 2016, 14 (09) :3974-3979