Further spectral properties of uniformly elliptic operators that include a non-local term

被引:5
作者
Dodds, Niall [1 ]
机构
[1] Univ Dundee, Div Math, Dundee DD1 4HN, Scotland
关键词
non-local; uniformly elliptic; eigenvalues; integro-differential;
D O I
10.1016/j.amc.2007.07.049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the eigenvalues of a class of non-local differential operators. The real eigenvalues of certain examples of these operators have previously been plotted ( as functions of a fundamental parameter in the operator), using appropriate computer software. Here we show how the complex eigenvalues of such operators may also be plotted. We use the plots of both the real and the complex eigenvalues to motivate a number of new theoretical results regarding the structure of the spectrum, which we subsequently prove under suitable hypotheses. (C) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:317 / 327
页数:11
相关论文
共 20 条
[1]   Positivity of solutions of elliptic equations with nonlocal terms [J].
Allegretto, W ;
Barabanova, A .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1996, 126 :643-663
[2]   Single-point blowup for nonlocal parabolic problems [J].
Bebernes, J ;
Li, C ;
Talaga, P .
PHYSICA D, 1999, 134 (01) :48-60
[3]   A geometric approach to singularly perturbed nonlocal reaction-diffusion equations [J].
Bose, A .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2000, 31 (02) :431-454
[4]  
Bose A., 1998, METHODS APPL ANAL, V5, P351, DOI DOI 10.4310/MAA.1998.V5.N4.A2
[5]  
Bose A., 2000, METHODS APPL ANAL, V7, P295
[6]  
Chafee N., 1981, Nonlinear Differential Equations, P97
[7]  
Davidson F.A., 2006, ELEC J DIFF EQNS, P1
[8]  
Davidson Fordyce A., 2006, Appl. Anal., V85, P717, DOI DOI 10.1080/00036810600555171.EPRINT
[9]   TEMPERATURE SURGES IN CURRENT-LIMITING CIRCUIT DEVICES [J].
FOWLER, AC ;
FRIGAARD, I ;
HOWISON, SD .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1992, 52 (04) :998-1011
[10]  
Freitas, 1999, FIELDS I COMMUN, V21, P187