Free Rhodium (II) citrate and rhodium (II) citrate magnetic carriers as potential strategies for breast cancer therapy

被引:32
作者
Carneiro, Marcella L. B.
Nunes, Eloiza S.
Peixoto, Raphael C. A.
Oliveira, Ricardo G. S.
Lourenco, Luiza H. M.
da Silva, Izabel C. R.
Simioni, Andreza R.
Tedesco, Antonio C.
de Souza, Aparecido R.
Lacava, Zulmira G. M.
Bao, Sonia N.
机构
[1] Instituto de Ciências Biológicas, Universidade de Brasília (UnB)
[2] Instituto de Química, Universidade Federal de Goiás (UFG)
[3] Departamento de Química, Laboratório de Fotobiologia e Fotomedicina, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto-SP
关键词
IRON-OXIDE NANOPARTICLES; COMPLEXES; RELEASE; PERMEABILITY; CARBOXYLATES; PARTICLES; MECHANISM; ADDUCTS; SURFACE; AGENTS;
D O I
10.1186/1477-3155-9-11
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Rhodium (II) citrate (Rh-2(H(2)cit)(4)) has significant antitumor, cytotoxic, and cytostatic activity on Ehrlich ascite tumor. Although toxic to normal cells, its lower toxicity when compared to carboxylate analogues of rhodium (II) indicates Rh-2(H(2)cit)(4) as a promising agent for chemotherapy. Nevertheless, few studies have been performed to explore this potential. Superparamagnetic particles of iron oxide (SPIOs) represent an attractive platform as carriers in drug delivery systems (DDS) because they can present greater specificity to tumor cells than normal cells. Thus, the association between Rh-2(H(2)cit)(4) and SPIOs can represent a strategy to enhance the former's therapeutic action. In this work, we report the cytotoxicity of free rhodium (II) citrate (Rh-2(H(2)cit)(4)) and rhodium (II) citrate-loaded maghemite nanoparticles or magnetoliposomes, used as drug delivery systems, on both normal and carcinoma breast cell cultures. Results: Treatment with free Rh-2(H(2)cit)(4) induced cytotoxicity that was dependent on dose, time, and cell line. The IC50 values showed that this effect was more intense on breast normal cells (MCF-10A) than on breast carcinoma cells (MCF-7 and 4T1). However, the treatment with 50 mu M Rh-2(H(2)cit)(4)-loaded maghemite nanoparticles (Magh-Rh-2(H(2)cit)(4)) and Rh-2(H(2)cit)(4)-loaded magnetoliposomes (Lip-Magh-Rh-2(H(2)cit)(4)) induced a higher cytotoxicity on MCF-7 and 4T1 than on MCF-10A (p < 0.05). These treatments enhanced cytotoxicity up to 4.6 times. These cytotoxic effects, induced by free Rh-2(H(2)cit)(4), were evidenced by morphological alterations such as nuclear fragmentation, membrane blebbing and phosphatidylserine exposure, reduction of actin filaments, mitochondrial condensation and an increase in number of vacuoles, suggesting that Rh-2(H(2)cit)(4) induces cell death by apoptosis. Conclusions: The treatment with rhodium (II) citrate-loaded maghemite nanoparticles and magnetoliposomes induced more specific cytotoxicity on breast carcinoma cells than on breast normal cells, which is the opposite of the results observed with free Rh-2(H(2)cit)(4) treatment. Thus, magnetic nanoparticles represent an attractive platform as carriers in Rh-2(H(2)cit)(4) delivery systems, since they can act preferentially in tumor cells. Therefore, these nanopaticulate systems may be explored as a potential tool for chemotherapy drug development.
引用
收藏
页数:17
相关论文
共 49 条
[1]  
Alberti C, 2009, EUR REV MED PHARMACO, V13, P13
[2]   Dirhodium(II,II) complexes: Molecular characteristics that affect in vitro activity [J].
Angeles-Boza, Alfredo M. ;
Chifotides, Helen T. ;
Aguirre, J. Dafhne ;
Chouai, Abdellatif ;
Fu, Patty K. -L. ;
Dunbar, Kim R. ;
Turro, Claudia .
JOURNAL OF MEDICINAL CHEMISTRY, 2006, 49 (23) :6841-6847
[3]   In vitro release behavior and cytotoxicity of doxorubicin-loaded gold nanoparticles in cancerous cells [J].
Asadishad, B. ;
Vossoughi, M. ;
Alamzadeh, I. .
BIOTECHNOLOGY LETTERS, 2010, 32 (05) :649-654
[4]   Finite-size effects in fine particles: magnetic and transport properties [J].
Batlle, X ;
Labarta, A .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2002, 35 (06) :R15-R42
[5]  
BEAR JL, 1975, CANCER CHEMOTH REP 1, V59, P611
[6]  
BELLAMY LJ, 1975, INFRARED SPECTRA COM, P3
[7]   RHODIUM(II) CARBOXYLATES [J].
BOYAR, EB ;
ROBINSON, SD .
COORDINATION CHEMISTRY REVIEWS, 1983, 50 (1-2) :109-208
[8]   Controlled release of rhodium (II) carboxylates and their association complexes with cyclodextrins from hydroxyapatite matrix [J].
Burgos, AE ;
Belchior, JC ;
Sinisterra, RD .
BIOMATERIALS, 2002, 23 (12) :2519-2526
[9]   Interactions of metal-metal-bonded antitumor active complexes with DNA fragments and DNA [J].
Chifotides, HT ;
Dunbar, KR .
ACCOUNTS OF CHEMICAL RESEARCH, 2005, 38 (02) :146-156
[10]   Breast cancer as a global health concern [J].
Coughlin, Steven S. ;
Ekwueme, Donatus U. .
CANCER EPIDEMIOLOGY, 2009, 33 (05) :315-318