Effect of graphene oxide concentration on the properties of silicon nanoholes/poly(3,4-ethylene dioxythiophene): poly(styrene sulfonate)/graphene oxide hybrid solar cell

被引:6
作者
Ngoc Anh Nguyen [1 ]
Van Hao Nguyen [2 ]
Van Nhat Pham [3 ]
Tuan Tu Le [4 ]
Van Tu Nguyen [1 ]
Van Trinh Pham [1 ,5 ]
机构
[1] Vietnam Acad Sci & Technol, Inst Mat Sci, 18 Hoang Quoc Viet Str, Hanoi 10000, Vietnam
[2] TNU Univ Sci, Inst Sci & Technol, Thai Nguyen 24000, Vietnam
[3] Univ Sci & Technol Hanoi, Vietnam Acad Sci & Technol, 18 Hoang Quoc Viet Str, Hanoi 10000, Vietnam
[4] Vietnam Natl Univ, VNU Univ Sci, Fac Phys, 334 Nguyen Trai Str, Hanoi 10000, Vietnam
[5] Grad Univ Sci & Technol, Vietnam Acad Sci & Technol, 18 Hoang Quoc Viet Str, Hanoi 10000, Vietnam
关键词
graphene oxide; conductive polymer; silicon nanoholes; light trapping; hybrid solar cell; HOLE TRANSPORT LAYER; EFFICIENCY; ANTIREFLECTION; ENHANCEMENT;
D O I
10.1088/2043-6262/ac2740
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We present herein some results on the fabrication and characterisation of n-type silicon nanoholes (SiNH)/poly(3,4-ethylene dioxythiophene):poly (styrene sulfonate) (PEDOT:PSS) containing different graphene oxide (GO) hybrid solar cells. SiNH prepared by a chemical etching method showed a relatively low reflectance below 10% in the incident wavelength range of 300-1000 nm. The effect of GO concentrations on the performance of the hybrid solar cell was also investigated. The solar cell containing 0.5 wt% GO concentration had a maximum power conversion efficiency (PCE) of 9.07%, a V-oc of 0.519 V, a J(sc) of 26.85 mA cm(-2) and an FF of 65%, which is about 20% improvement compared to the device without GO (7.53%). The enhancement is attributed to the increase in electrical conductivity of the PEDOT:PSS coating layer due to the addition of the GO.
引用
收藏
页数:7
相关论文
共 29 条
[21]   A review of anti-reflection and self-cleaning coatings on photovoltaic panels [J].
Sarkin, Ali Samet ;
Ekren, Nazmi ;
Saglam, Safak .
SOLAR ENERGY, 2020, 199 :63-73
[22]   Polyurethane Nanocomposites Containing Reduced Graphene Oxide, FTIR, Raman, and XRD Studies [J].
Strankowski, Michal ;
Wlodarczyk, Damian ;
Piszczyk, Aukasz ;
Strankowska, Justyna .
JOURNAL OF SPECTROSCOPY, 2016, 2016
[23]   Highly Air-Stable Solution-Processed and Low-Temperature Organic/Inorganic Nanostructure Hybrid Solar Cells [J].
Subramani, Thiyagu ;
Chen, Junyi ;
Kobayashi, Yuka ;
Jevasuwan, Wipakorn ;
Fukata, Naoki .
ACS APPLIED ENERGY MATERIALS, 2019, 2 (04) :2637-2644
[24]   High-efficiency silicon hybrid solar cells employing nanocrystalline Si quantum dots and Si nanotips for energy management [J].
Subramani, Thiyagu ;
Chen, Junyi ;
Sun, Yong-Lie ;
Jevasuwan, Wipakorn ;
Fukata, Naoki .
NANO ENERGY, 2017, 35 :154-160
[25]  
Trinh PV, 2017, J NANO ELECTRON PHYS, V9, DOI 10.21272/jnep.9(6).06025
[26]   Fabrication of silicon nanowire/poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate)-graphene oxide hybrid solar cells [J].
Uma, Kasimayan ;
Subramani, Thiyagu ;
Syu, Hong-Jhang ;
Lin, Tzu-Ching ;
Lin, Ching-Fuh .
JOURNAL OF APPLIED PHYSICS, 2015, 117 (10)
[27]   High Efficiency Organic/Silicon-Nanowire Hybrid Solar Cells: Significance of Strong Inversion Layer [J].
Yu, Xuegong ;
Shen, Xinlei ;
Mu, Xinhui ;
Zhang, Jie ;
Sun, Baoquan ;
Zeng, Lingsheng ;
Yang, Lifei ;
Wu, Yichao ;
He, Hang ;
Yang, Deren .
SCIENTIFIC REPORTS, 2015, 5
[28]   Recent advances in highly efficient organic-silicon hybrid solar cells [J].
Zhang, Tong ;
Iqbal, Sami ;
Zhang, Xiao-Yang ;
Wu, Weiping ;
Su, Dan ;
Zhou, Huan-Li .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2020, 204
[29]   Graphene and Graphene Oxide: Synthesis, Properties, and Applications [J].
Zhu, Yanwu ;
Murali, Shanthi ;
Cai, Weiwei ;
Li, Xuesong ;
Suk, Ji Won ;
Potts, Jeffrey R. ;
Ruoff, Rodney S. .
ADVANCED MATERIALS, 2010, 22 (35) :3906-3924