FAOD-Net: A Fast AOD-Net for Dehazing Single Image

被引:14
|
作者
Qian, Wen [1 ,2 ]
Zhou, Chao [1 ,2 ]
Zhang, Dengyin [2 ,3 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Telecommun & Informat Engn, Nanjing 210003, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Jiangsu Key Lab Broadband Wireless Commun & Inter, Nanjing 210003, Peoples R China
[3] Nanjing Univ Posts & Telecommun, Sch Internet ings, Nanjing 210003, Peoples R China
基金
中国国家自然科学基金;
关键词
QUALITY ASSESSMENT;
D O I
10.1155/2020/4945214
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we present an extremely computation-efficient model called FAOD-Net for dehazing single image. FAOD-Net is based on a streamlined architecture that uses depthwise separable convolutions to build lightweight deep neural networks. Moreover, the pyramid pooling module is added in FAOD-Net to aggregate the context information of different regions of the image, thereby improving the ability of the network model to obtain the global information of the foggy image. To get the best FAOD-Net, we use the RESIDE training set to train our proposed model. In addition, we have carried out extensive experiments on the RESIDE test set. We use full-reference and no-reference image quality evaluation indicators to measure the effect of dehazing. Experimental results show that the proposed algorithm has satisfactory results in terms of defogging quality and speed.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] An end-to-end single image dehazing network based on U-net
    Miao, Yu
    Zhao, Xixuan
    Kan, Jiangming
    SIGNAL IMAGE AND VIDEO PROCESSING, 2022, 16 (07) : 1739 - 1746
  • [32] IFE-Net: An Integrated Feature Extraction Network for Single-Image Dehazing
    Leng, Can
    Liu, Gang
    APPLIED SCIENCES-BASEL, 2023, 13 (22):
  • [33] USID-Net: Unsupervised Single Image Dehazing Network via Disentangled Representations
    Li, Jiafeng
    Li, Yaopeng
    Zhuo, Li
    Kuang, Lingyan
    Yu, Tianjian
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 3587 - 3601
  • [34] An end-to-end single image dehazing network based on U-net
    Yu Miao
    Xixuan Zhao
    Jiangming Kan
    Signal, Image and Video Processing, 2022, 16 : 1739 - 1746
  • [35] Fast Single Image Dehazing Algorithm
    Lu, Xipan
    Lv, Guoyun
    Lei, Tao
    2014 INTERNATIONAL CONFERENCE ON AUDIO, LANGUAGE AND IMAGE PROCESSING (ICALIP), VOLS 1-2, 2014, : 341 - 346
  • [36] 基于AOD-Net的交通道路图像大气能见度检测系统
    陈勇
    王绎凯
    王振宇
    电脑知识与技术, 2021, 17 (18) : 199 - 200
  • [37] 一种基于深度学习的AOD-Net改进去雾算法研究
    周奇
    王可庆
    焦思韬
    李刘洋
    软件, 2023, 44 (12) : 87 - 93
  • [38] SG-Net: Semantic Guided Network for Image Dehazing
    Hong, Tao
    Guo, Xiangyang
    Zhang, Zeren
    Ma, Jinwen
    COMPUTER VISION - ACCV 2022, PT III, 2023, 13843 : 274 - 289
  • [39] DU-Net: A new double U-shaped network for single image dehazing
    Zhang, Xiaodong
    Zhang, Long
    Chu, Menghui
    Wang, Shuo
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2024, 100
  • [40] 一种基于改进AOD-Net的航拍图像去雾算法
    李永福
    崔恒奇
    朱浩
    张开碧
    自动化学报, 2022, 48 (06) : 1543 - 1559