FAOD-Net: A Fast AOD-Net for Dehazing Single Image

被引:14
|
作者
Qian, Wen [1 ,2 ]
Zhou, Chao [1 ,2 ]
Zhang, Dengyin [2 ,3 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Telecommun & Informat Engn, Nanjing 210003, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Jiangsu Key Lab Broadband Wireless Commun & Inter, Nanjing 210003, Peoples R China
[3] Nanjing Univ Posts & Telecommun, Sch Internet ings, Nanjing 210003, Peoples R China
基金
中国国家自然科学基金;
关键词
QUALITY ASSESSMENT;
D O I
10.1155/2020/4945214
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we present an extremely computation-efficient model called FAOD-Net for dehazing single image. FAOD-Net is based on a streamlined architecture that uses depthwise separable convolutions to build lightweight deep neural networks. Moreover, the pyramid pooling module is added in FAOD-Net to aggregate the context information of different regions of the image, thereby improving the ability of the network model to obtain the global information of the foggy image. To get the best FAOD-Net, we use the RESIDE training set to train our proposed model. In addition, we have carried out extensive experiments on the RESIDE test set. We use full-reference and no-reference image quality evaluation indicators to measure the effect of dehazing. Experimental results show that the proposed algorithm has satisfactory results in terms of defogging quality and speed.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] FFA-Net: Feature Fusion Attention Network for Single Image Dehazing
    Qin, Xu
    Wang, Zhilin
    Bai, Yuanchao
    Xie, Xiaodong
    Jia, Huizhu
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 11908 - 11915
  • [22] 基于改进AOD-Net网络模型的车载图像去雾方法
    景嘉宝
    王正家
    何涛
    翟海祥
    激光杂志, 2023, 44 (02) : 83 - 90
  • [23] 改进AOD-Net的道路交通图像去雾算法
    孟修建
    乔欢欢
    王雅
    程晓
    计算机系统应用, 2024, 33 (01) : 206 - 212
  • [24] AGD-Net: Attention-Guided Dense Inception U-Net for Single-Image Dehazing
    Amit Chougule
    Agneya Bhardwaj
    Vinay Chamola
    Pratik Narang
    Cognitive Computation, 2024, 16 : 788 - 801
  • [25] AGD-Net: Attention-Guided Dense Inception U-Net for Single-Image Dehazing
    Chougule, Amit
    Bhardwaj, Agneya
    Chamola, Vinay
    Narang, Pratik
    COGNITIVE COMPUTATION, 2024, 16 (02) : 788 - 801
  • [26] IMAGE DEHAZING WITH CONTEXTUALIZED ATTENTIVE U-NET
    Lee, Yean-Wei
    Wong, Lai-Kuan
    See, John
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 1068 - 1072
  • [27] An Improved U-Net Architecture for Image Dehazing
    Ge, Wenyi
    Lin, Yi
    Wang, Zhitao
    Wang, Guigui
    Tan, Shihan
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2021, E104D (12) : 2218 - 2225
  • [28] PDR-Net: Perception-Inspired Single Image Dehazing Network With Refinement
    Li, Chongyi
    Guo, Chunle
    Guo, Jichang
    Han, Ping
    Fu, Huazhu
    Cong, Runmin
    IEEE TRANSACTIONS ON MULTIMEDIA, 2020, 22 (03) : 704 - 716
  • [29] EAA-Net: A novel edge assisted attention network for single image dehazing
    Wang, Chao
    Shen, Hao-Zhen
    Fan, Fan
    Shao, Ming-Wen
    Yang, Chuan-Sheng
    Luo, Jian-Cheng
    Deng, Liang-Jian
    KNOWLEDGE-BASED SYSTEMS, 2021, 228
  • [30] SID-Net: single image dehazing network using adversarial and contrastive learning
    Yi, Weichao
    Dong, Liquan
    Liu, Ming
    Hui, Mei
    Kong, Lingqin
    Zhao, Yuejin
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (28) : 71619 - 71638