ESTIMATES FOR PARAMETRIC MARCINKIEWICZ INTEGRALS ON MUSIELAK-ORLICZ HARDY SPACES

被引:3
|
作者
Liu, Xiong [1 ]
Li, Baode [1 ]
Qiu, Xiaoli [1 ]
Li, Bo [1 ,2 ]
机构
[1] Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
[2] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2018年 / 12卷 / 04期
基金
中国国家自然科学基金;
关键词
Marcinkiewicz integral; Muckenhoupt weight; Musielak-Orlicz function; Hardy space; BOUNDEDNESS;
D O I
10.7153/jmi-2018-12-86
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let phi : R-n x [0, infinity) -> [0, infinity) satisfy that phi(x, .), for any given x is an element of R-n, is an Orlicz function and phi(., t) is a Muckenhoupt A(infinity) weight uniformly in t is an element of (0, infinity). The Musielak-Orlicz Hardy space H-phi(R-n) generalizes both of the weighted Hardy space and the Orlicz Hardy space and hence has a wide generality. In this paper. the authors first prove the completeness of both of the Musielak-Orlicz space L-phi(R-n) and the weak Musielak-Orlicz space WL phi(R-n). Then the authors obtain two boundedness criterions of operators on Musielak-Orlicz spaces. As applications, the authors establish the boundedness of parametric Marcinkiewicz integral mu(rho)(ohm) from to H-phi(R-n) to L-phi(R-n) (resp. WL phi(R-n)) under weaker smoothness condition (resp. some Lipschitz condition) assumed on ohm. These results are also new even when phi(x, t) := phi(t) for all (x, t) is an element of R-n x [0, infinity), where phi is an Orlicz function.
引用
收藏
页码:1117 / 1147
页数:31
相关论文
共 50 条
  • [1] Boundedness of Marcinkiewicz integrals with rough kernels on Musielak-Orlicz Hardy spaces
    Bo Li
    Minfeng Liao
    Baode Li
    Journal of Inequalities and Applications, 2017
  • [2] Boundedness of Marcinkiewicz integrals with rough kernels on Musielak-Orlicz Hardy spaces
    Li, Bo
    Liao, Minfeng
    Li, Baode
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2017,
  • [3] PARAMETRIC MARCINKIEWICZ INTEGRALS WITH ROUGH KERNELS ACTING ON WEAK MUSIELAK ORLICZ HARDY SPACES
    Li, Bo
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2019, 13 (01): : 47 - 63
  • [4] Musielak-Orlicz Hardy Spaces
    Yang, Dachun
    Liang, Yiyu
    Luong Dang Ky
    REAL-VARIABLE THEORY OF MUSIELAK-ORLICZ HARDY SPACES, 2017, 2182 : 1 - 57
  • [5] Local Musielak-Orlicz Hardy Spaces
    Yang, Dachun
    Liang, Yiyu
    Luong Dang Ky
    REAL-VARIABLE THEORY OF MUSIELAK-ORLICZ HARDY SPACES, 2017, 2182 : 255 - 327
  • [6] Hardy operators on Musielak-Orlicz spaces
    Karaman, Turhan
    FORUM MATHEMATICUM, 2018, 30 (05) : 1245 - 1254
  • [7] Martingale Musielak-Orlicz Hardy spaces
    Guangheng Xie
    Yong Jiao
    Dachun Yang
    Science China Mathematics, 2019, 62 : 1567 - 1584
  • [8] SUMMABILITY IN MUSIELAK-ORLICZ HARDY SPACES
    Liu, Jun
    Xia, Haonan
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (05) : 1057 - 1072
  • [9] Weak Musielak-Orlicz Hardy Spaces
    Yang, Dachun
    Liang, Yiyu
    Luong Dang Ky
    REAL-VARIABLE THEORY OF MUSIELAK-ORLICZ HARDY SPACES, 2017, 2182 : 195 - 253
  • [10] Martingale Musielak-Orlicz Hardy spaces
    Xie, Guangheng
    Jiao, Yong
    Yang, Dachun
    SCIENCE CHINA-MATHEMATICS, 2019, 62 (08) : 1567 - 1584