Principles of self-organization and load adaptation by the actin cytoskeleton during clathrin-mediated endocytosis

被引:104
作者
Akamatsu, Matthew [1 ]
Vasan, Ritvik [2 ]
Serwas, Daniel [1 ]
Ferrin, Michael A. [1 ]
Rangamani, Padmini [2 ]
Drubin, David G. [1 ]
机构
[1] Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA
[2] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA
基金
美国国家卫生研究院;
关键词
FILAMENT BRANCH FORMATION; ARP2/3; COMPLEX; FISSION YEAST; THERMAL FLUCTUATIONS; BINDING PROTEIN; MEMBRANE TENSION; FORCE GENERATION; PLASMA-MEMBRANE; DYNAMICS; SINGLE;
D O I
10.7554/eLife.49840
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Force generation by actin assembly shapes cellular membranes. An experimentally constrained multiscale model shows that a minimal branched actin network is sufficient to internalize endocytic pits against membrane tension. Around 200 activated Arp2/3 complexes are required for robust internalization. A newly developed molecule-counting method determined that similar to 200 Arp2/3 complexes assemble at sites of clathrin-mediated endocytosis in human cells. Simulations predict that actin self-organizes into a radial branched array with growing ends oriented toward the base of the pit. Long actin filaments bend between attachment sites in the coat and the base of the pit. Elastic energy stored in bent filaments, whose presence was confirmed by cryo-electron tomography, contributes to endocytic internalization. Elevated membrane tension directs more growing filaments toward the base of the pit, increasing actin nucleation and bending for increased force production. Thus, spatially constrained actin filament assembly utilizes an adaptive mechanism enabling endocytosis under varying physical constraints.
引用
收藏
页数:40
相关论文
共 141 条
[1]   CROONIAN LECTURE, 1978 - CRAWLING MOVEMENT OF METAZOAN CELLS [J].
ABERCROMBIE, M .
PROCEEDINGS OF THE ROYAL SOCIETY SERIES B-BIOLOGICAL SCIENCES, 1980, 207 (1167) :129-+
[2]   Advances in Analysis of Low Signal-to-Noise Images Link Dynamin and AP2 to the Functions of an Endocytic Checkpoint [J].
Aguet, Francois ;
Antonescu, Costin N. ;
Mettlen, Marcel ;
Schmid, Sandra L. ;
Danuser, Gaudenz .
DEVELOPMENTAL CELL, 2013, 26 (03) :279-291
[3]  
Akamatsu M., 2019, CODE ASSOCIATED AKAM
[4]   Analysis of interphase node proteins in fission yeast by quantitative and superresolution fluorescence microscopy [J].
Akamatsu, Matthew ;
Lin, Yu ;
Bewersdorf, Joerg ;
Pollard, Thomas D. .
MOLECULAR BIOLOGY OF THE CELL, 2017, 28 (23) :3203-3214
[5]   The role of traction in membrane curvature generation [J].
Alimohamadi, H. ;
Vasan, R. ;
Hassinger, J. E. ;
Stachowiak, J. C. ;
Rangamani, P. .
MOLECULAR BIOLOGY OF THE CELL, 2018, 29 (16) :2024-2035
[6]   A Flat BAR Protein Promotes Actin Polymerization at the Base of Clathrin-Coated Pits [J].
Almeida-Souza, Leonardo ;
Frank, Rene A. W. ;
Garcia-Nafria, Javier ;
Colussi, Adeline ;
Gunawardana, Nushan ;
Johnson, Christopher M. ;
Yu, Minmin ;
Howard, Gillian ;
Andrews, Byron ;
Vallis, Yvonne ;
McMahon, Harvey T. .
CELL, 2018, 174 (02) :325-+
[7]   The Arp2/3 complex nucleates actin filament branches from the sides of pre-existing filaments [J].
Amann, KJ ;
Pollard, TD .
NATURE CELL BIOLOGY, 2001, 3 (03) :306-310
[8]  
[Anonymous], CELL MOVEMENT, DOI DOI 10.1007/978-3-319-96842-1_9
[9]   High-speed superresolution imaging of the proteins in fission yeast clathrin-mediated endocytic actin patches [J].
Arasada, Rajesh ;
Sayyad, Wasim A. ;
Berro, Julien ;
Pollard, Thomas D. .
MOLECULAR BIOLOGY OF THE CELL, 2018, 29 (03) :295-303
[10]   Actin Turnover in Lamellipodial Fragments [J].
Aroush, Dikla Raz-Ben ;
Ofer, Noa ;
Abu-Shah, Enas ;
Allard, Jun ;
Krichevsky, Oleg ;
Mogilner, Alex ;
Keren, Kinneret .
CURRENT BIOLOGY, 2017, 27 (19) :2963-+