An efficient algorithm for the computation of Galois automorphisms

被引:2
作者
Allombert, B [1 ]
机构
[1] Univ Bordeaux 1, Lab A2X, F-33405 Talence, France
关键词
D O I
10.1090/S0025-5718-03-01476-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe an algorithm for computing the Galois automorphisms of a Galois extension which generalizes the algorithm of Acciaro and Kluners to the non-Abelian case. This is much faster in practice than algorithms based on LLL or factorization.
引用
收藏
页码:359 / 375
页数:17
相关论文
共 11 条
[1]  
ABBOTT J, 2000, P ISSAC 2000, P1
[2]   Computing automorphisms of abelian number fields [J].
Acciaro, V ;
Klüners, J .
MATHEMATICS OF COMPUTATION, 1999, 68 (227) :1179-1186
[3]  
Batut C., USERS GUIDE PARI GP
[4]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[5]  
Cohen, 1993, COURSE COMPUTATIONAL, V8, DOI DOI 10.1007/978-3-662-02945-9
[6]   KANT V4 [J].
Daberkow, M ;
Fieker, C ;
Kluners, J ;
Pohst, M ;
Roegner, K ;
Schornig, M ;
Wildanger, K .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :267-283
[7]  
HALL M, 1959, THEORY GROUPS
[8]   Explicit Galois realization of transitive groups of degree up to 15 [J].
Klüners, J ;
Malle, G .
JOURNAL OF SYMBOLIC COMPUTATION, 2000, 30 (06) :675-716
[9]  
Kluners J., 1998, J. Theor. Nombres Bordeaux, V10, P243
[10]  
KULNERS J, 1997, THESIS TU BERLIN