Fluid-structure interaction simulation of calcified aortic valve stenosis

被引:7
作者
Cai, Li [1 ,2 ,3 ]
Hao, Yu [1 ,2 ,3 ]
Ma, Pengfei [1 ,2 ,3 ]
Zhu, Guangyu [4 ]
Luo, Xiaoyu [5 ]
Gao, Hao [5 ]
机构
[1] Northwestern Polytech Univ, Sch Math & Stat, Xian 710129, Peoples R China
[2] NPU UoG Int Cooperat Lab Computat & Applicat Card, Xian 710129, Peoples R China
[3] Xian Key Lab Sci Computat & Appl Stat, Xian 710129, Peoples R China
[4] Xi An Jiao Tong Univ, Sch Energy & Power Engn, Xian 710049, Peoples R China
[5] Univ Glasgow, Sch Math & Stat, Glasgow G12 8QQ, Lanark, Scotland
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
fluid-structure interaction; aortic valve; calcification; hybrid immersed boundary/finite element method; IMMERSED BOUNDARY MODEL; FINITE-ELEMENT MODEL; LEFT-VENTRICLE; CALCIFICATION; STRAIN; IMPLANTATION; REPLACEMENT; MANAGEMENT; PATTERNS; FLOW;
D O I
10.3934/mbe.2022616
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Calcified aortic valve stenosis (CAVS) is caused by calcium buildup and tissue thickening that impede the blood flow from left ventricle (IN) to aorta. In recent years, CAVS has become one of the most common cardiovascular diseases. Therefore, it is necessary to study the mechanics of aortic valve (AV) caused by calcification. In this paper, based on a previous idealized AV model, the hybrid immersed boundary/finite element method (IB/FE) is used to study AV dynamics and hemodynamic performance under normal and calcified conditions. The computational CAVS model is realized by dividing the AV leaflets into a calcified region and a healthy region, and each is described by a specific constitutive equation. Our results show that calcification can significantly affect 1W dynamics. For example, the elasticity and mobility of the leaflets decrease due to calcification, leading to a smaller opening area with a high forward jet flow across the valve. The calcified valve also experiences an increase in local stress and strain. The increased loading due to AV stenosis further leads to a significant increase in left ventricular energy loss and transvalvular pressure gradients. The model predicted hemodynamic parameters are in general consistent with the risk classification of AV stenosis in the clinic. Therefore, mathematical models of AV with calcification have the potential to deepen our understanding of AV stenosis-induced ventricular dysfunction and facilitate the development of computational engineering-assisted medical diagnosis in AV related diseases.
引用
收藏
页码:13172 / 13192
页数:21
相关论文
共 64 条
[1]   A strain-based finite element model for calcification progression in aortic valves [J].
Arzani, Amirhossein ;
Mofrad, Mohammad R. K. .
JOURNAL OF BIOMECHANICS, 2017, 65 :216-220
[2]   Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice [J].
Baumgartner, Helmut ;
Hung, Judy ;
Bermejo, Javier ;
Chambers, John B. ;
Evangelista, Arturo ;
Griffin, Brian P. ;
Iung, Bernard ;
Otto, Catherine M. ;
Pellikka, Patricia A. ;
Quinones, Miguel .
EUROPEAN JOURNAL OF ECHOCARDIOGRAPHY, 2009, 10 (01) :1-25
[3]   ACC/AHA 2006 guidelines for the management of patients with valvular heart disease [J].
Bonow, Robert O. ;
Carabello, Blase A. ;
Chatterjee, Kanu ;
de Leon, Antonio C., Jr. ;
Faxon, David P. ;
Freed, Michael D. ;
Gaasch, William H. ;
Lytle, Bruce Whitney ;
Nishimura, Rick A. ;
O'Gara, Patrick T. ;
O'Rourke, Robert A. ;
Otto, Catherine M. ;
Shah, Pravin M. ;
Shanewise, Jack S. ;
Smith, Sidney C., Jr. ;
Jacobs, Alice K. ;
Adams, Cynthia D. ;
Anderson, Jeffrey L. ;
Antman, Elliott M. ;
Faxon, David P. ;
Fuster, Valentin ;
Halperin, Jonathan L. ;
Hiratzka, Loren F. ;
Hunt, Sharon A. ;
Lytle, Bruce W. ;
Nishimura, Rick ;
Page, Richard L. ;
Riegel, Barbara .
CIRCULATION, 2006, 114 (05) :E84-E231
[4]   The Comparison of Different Constitutive Laws and Fiber Architectures for the Aortic Valve on Fluid-Structure Interaction Simulation [J].
Cai, Li ;
Zhang, Ruihang ;
Li, Yiqiang ;
Zhu, Guangyu ;
Ma, Xingshuang ;
Wang, Yongheng ;
Luo, Xiaoyu ;
Gao, Hao .
FRONTIERS IN PHYSIOLOGY, 2021, 12
[5]   Some Effects of Different Constitutive Laws on FSI Simulation for the Mitral Valve [J].
Cai, Li ;
Wang, Ying ;
Gao, Hao ;
Mai, Xingshuang ;
Zhu, Guangyu ;
Zhang, Ruihang ;
Shen, Xiaoqin ;
Luo, Xiaoyu .
SCIENTIFIC REPORTS, 2019, 9 (1)
[6]   Study of cardiovascular function using a coupled left ventricle and systemic circulation model [J].
Chen, W. W. ;
Gao, H. ;
Luo, X. Y. ;
Hill, N. A. .
JOURNAL OF BIOMECHANICS, 2016, 49 (12) :2445-2454
[7]  
Chew GG, 1999, J MED ENG TECHNOL, V23, P178, DOI 10.1080/030919099294131
[8]   A three-dimensional computational analysis of fluid-structure interaction in the aortic valve [J].
De Hart, J ;
Peters, GWM ;
Schreurs, PJG ;
Baaijens, FPT .
JOURNAL OF BIOMECHANICS, 2003, 36 (01) :103-112
[9]   Numerical simulation of the non-Newtonian blood flow through a mechanical aortic valve [J].
De Vita, F. ;
de Tullio, M. D. ;
Verzicco, R. .
THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2016, 30 (1-2) :129-138
[10]   AN ARBITRARY LAGRANGIAN-EULERIAN FINITE-ELEMENT METHOD FOR TRANSIENT DYNAMIC FLUID STRUCTURE INTERACTIONS [J].
DONEA, J ;
GUILIANI, S ;
HALLEUX, JP .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1982, 33 (1-3) :689-723