Quantum-Teleportation-Inspired Algorithm for Sampling Large Random Quantum Circuits

被引:19
作者
Chen, Ming-Cheng [1 ,2 ,3 ]
Li, Riling [4 ]
Gan, Lin [4 ,5 ]
Zhu, Xiaobo [1 ,2 ,3 ]
Yang, Guangwen [4 ,5 ]
Lu, Chao-Yang [1 ,2 ,3 ]
Pan, Jian-Wei [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, CAS Ctr Excellence & Synerget Innovat Ctr Quantum, Hefei 230026, Anhui, Peoples R China
[4] Tsinghua Univ, Dept Comp Sci & Technol, Beijing 100084, Peoples R China
[5] Natl Supercomp Ctr Wuxi, Wuxi 214072, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
COMPUTATION; SUPREMACY;
D O I
10.1103/PhysRevLett.124.080502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum teleportation transfers and processes quantum information through quantum entanglement channels. It is one of the most versatile protocols in quantum information science and leads to many remarkable applications, particularly the one-way quantum computing. Here, we show, for the first time, that the concept of teleportation can also be used to facilitate an important classical computing task, sampling random quantum circuits, which is highly relevant to prove the near-term demonstration of quantum computational supremacy. In our method, the classical computation in the physical-qubit state space is converted to simulate teleportation in logical-qubit state space, resulting in a much smaller number of qubits involved in classical computing. We tested this new method on 1D and 2D lattices up to 1000 qubits. This Letter presents a new quantum-inspired classical computing technology and is helpful to design and optimize classically hard quantum sampling experiments.
引用
收藏
页数:5
相关论文
共 32 条
[1]  
Aaronson S, 2011, ACM S THEORY COMPUT, P333
[2]  
[Anonymous], ARXIV161205903
[3]  
[Anonymous], ARXIV180404797
[4]  
[Anonymous], ARXIV190500444
[5]   Simulated quantum computation of molecular energies [J].
Aspuru-Guzik, A ;
Dutoi, AD ;
Love, PJ ;
Head-Gordon, M .
SCIENCE, 2005, 309 (5741) :1704-1707
[6]   Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits [J].
Ballance, C. J. ;
Harty, T. P. ;
Linke, N. M. ;
Sepiol, M. A. ;
Lucas, D. M. .
PHYSICAL REVIEW LETTERS, 2016, 117 (06)
[7]   Superconducting quantum circuits at the surface code threshold for fault tolerance [J].
Barends, R. ;
Kelly, J. ;
Megrant, A. ;
Veitia, A. ;
Sank, D. ;
Jeffrey, E. ;
White, T. C. ;
Mutus, J. ;
Fowler, A. G. ;
Campbell, B. ;
Chen, Y. ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Neill, C. ;
O'Malley, P. ;
Roushan, P. ;
Vainsencher, A. ;
Wenner, J. ;
Korotkov, A. N. ;
Cleland, A. N. ;
Martinis, John M. .
NATURE, 2014, 508 (7497) :500-503
[8]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[9]  
Biamonte J., ARXIV170800006
[10]  
Boixo S., ARXIV171205384