An Experimental Investigation of the Progressive Failure of Sandstone and Its Energy Evolution Characteristics

被引:0
作者
Chen, Yan [1 ]
Guo, Baohua [1 ,2 ]
机构
[1] Henan Polytech Univ, Sch Energy Sci & Engn, Jiaozuo 454003, Henan, Peoples R China
[2] Collaborat Innovat Ctr Coal Work Safety, Jiaozuo 454003, Henan, Peoples R China
关键词
SPECIMEN SIZE; MECHANICAL-PROPERTIES; CRACK INITIATION; ROCK; THRESHOLDS; STRENGTH;
D O I
10.1155/2018/8206073
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this research study, the progressive failure and energy evolution characteristics of sandstone samples with different sizes were explored under uniaxial and triaxial compression conditions. The characteristic stresses and strains were captured using the crack axial strain levels and dissipative energy. The results showed that, with the increase in the ratios of the height to diameter (H/D), the crack closure stresses increased, while the crack damage stresses decreased. However, the levels of both the crack closure stresses and crack damages were observed to increase with the HID. With increase in the confining pressure, it was found that the crack closure and crack damage stresses increased, while their levels decreased. The strains of the crack closures, peak crack axial, and crack propagation were observed to decrease with the H/D, while the crack closure strain levels increased. Also, the crack propagation strains were observed to increase with the confining pressures, while the crack closure, peak crack axial, and crack closure strain levels decreased. The progress failure of the sandstone samples was also obtained based on the evolution characteristics of the dissipative energy. The relationship between the energy densities during each phase and the HID was also analyzed. It was determined that, with the increasing of the H/D, the input, elastic, and dissipative energy densities displayed different evolution characteristics. Furthermore, with the increases in the characteristic stresses, the input and elastic energy densities were found to increase. The dissipative energy density displayed a slight increase with the increases in the peak strength, which resulted in variations with regard to the crack closures and crack damage stresses.
引用
收藏
页数:12
相关论文
共 19 条
[1]  
[Anonymous], INT J ROCK MECH MIN
[2]  
Bieniawski Z.T., 1967, INT J ROCK MECH MIN, V4, P395, DOI DOI 10.1016/0148-9062(67)90030-7
[4]   THE EFFECT OF SIZE ON MECHANICAL-PROPERTIES OF ROCK [J].
BRACE, WF .
GEOPHYSICAL RESEARCH LETTERS, 1981, 8 (07) :651-652
[5]   Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations [J].
Cai, M ;
Kaiser, PK ;
Tasaka, Y ;
Maejima, T ;
Morioka, H ;
Minami, M .
INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2004, 41 (05) :833-847
[6]   The Effect of Specimen Size on Strength and Other Properties in Laboratory Testing of Rock and Rock-Like Cementitious Brittle Materials [J].
Darlington, William J. ;
Ranjith, Pathegama G. ;
Choi, S. K. .
ROCK MECHANICS AND ROCK ENGINEERING, 2011, 44 (05) :513-529
[7]   Identifying crack initiation and propagation thresholds in brittle rock [J].
Eberhardt, E ;
Stead, D ;
Stimpson, B ;
Read, RS .
CANADIAN GEOTECHNICAL JOURNAL, 1998, 35 (02) :222-233
[8]   Practical estimates of rock mass strength [J].
Hoek, E ;
Brown, ET .
INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 1997, 34 (08) :1165-1186
[9]   Conversion of strain energy in Triaxial Unloading Tests on Marble [J].
Huang, Da ;
Li, Yanrong .
INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2014, 66 :160-168
[10]   Energy evolution characteristics of hard rock during triaxial failure with different loading and unloading paths [J].
Li, Diyuan ;
Sun, Zhi ;
Xie, Tao ;
Li, Xibing ;
Ranjith, P. G. .
ENGINEERING GEOLOGY, 2017, 228 :270-281