A modified kalman filtering via fuzzy logic system for ARVs location

被引:1
作者
Jin, Wenrui [1 ]
Zhan, Xingqun [1 ]
机构
[1] Shanghai Jiao Tong Univ, Inst Aerosp Sci & Technol, Shanghai 200030, Peoples R China
来源
2007 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, VOLS I-V, CONFERENCE PROCEEDINGS | 2007年
关键词
Kalman filter; fuzzy inference system; INS/GPS; navigation; sensorfusion;
D O I
10.1109/ICMA.2007.4303631
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a method for sensor fusion based on adaptive fuzzy Kalman filtering. The method is applied in fusing position signals from global positioning system (GPS) and inertial navigation system (INS) for autonomous robot vehicles (ARVs). The noise covariance of Kalman filter (KF) is modified on-line by the fuzzy adaptive controller in order to modulate Kalman filtering to be optimal and to improve the positioning accuracy of the integrated navigation system. The noise controller is based on fuzzy inference system (FIS), and compared with the performance of a simple Kalman filter (SKF). It is demonstrated that the FIS Kalman filtering gives better results, in terms of accuracy, than the SKF.
引用
收藏
页码:711 / 716
页数:6
相关论文
共 5 条
[1]   GPS/IMU data fusion using multisensor Kalman filtering: introduction of contextual aspects [J].
Caron, Francois ;
Duflos, Emmanuel ;
Pomorski, Denis ;
Vanheeghe, Philippe .
INFORMATION FUSION, 2006, 7 (02) :221-230
[2]  
COOPER S, 2004, IEEE INT C INT ROB S, P157
[3]   Adaptive tuning of a Kalman filter via fuzzy logic for an intelligent AUV navigation system [J].
Loebis, D ;
Sutton, R ;
Chudley, J ;
Naeem, W .
CONTROL ENGINEERING PRACTICE, 2004, 12 (12) :1531-1539
[4]  
Sasiadek JZ, 1999, ICRA '99: IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-4, PROCEEDINGS, P2970
[5]  
WANG Q, 1999, THESIS CARLETON U OT