ENMTML: An R package for a straightforward construction of complex ecological niche models

被引:151
作者
Alves de Andrade, Andre Felipe [1 ]
Elias Velazco, Santiago Jose [2 ]
De Marco Junior, Paulo [1 ]
机构
[1] Univ Fed Goias, Theory Metacommun & Landscape Ecol Lab, ICB V, CP 131, BR-74001970 Goiania, Go, Brazil
[2] Univ Nacl Misiones, Inst Biol Subtrop, CONICET, Bertoni 85, RA-3370 Puerto Iguazu, Misiones, Argentina
关键词
Species distribution model; Open-source software; Niche modeling; Model evaluation; SPECIES DISTRIBUTION MODELS; GEOGRAPHIC DISTRIBUTIONS; ACCESSIBLE AREA; CLIMATE; PERFORMANCE; UNCERTAINTIES; SOFTWARE; PLATFORM; CONSTRAINTS; REGRESSION;
D O I
10.1016/j.envsoft.2019.104615
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Ecological niche models (ENMs) is a popular method in ecology, mostly due to its broad applicability and the fact that required data is simple and easily accessible from digital databases. Nevertheless, there is an underlying methodological complexity, often overlooked by many scientists that rely on ENMs to achieve other objectives. We present here the package ENMTML, an Open Source R package. The main purpose of this package is to assemble all this methodological complexity spread over several papers and bring it into the spotlight in a simple way for people not used to the details of ENMs. The package contains several alternatives to different methodological steps, e.g., pseudo-absence allocation and accessible area delimitation, formulated within a single function, to make it accessible for people not used to the programming environment.
引用
收藏
页数:11
相关论文
共 89 条
[81]   Patterns and uncertainties of species' range shifts under climate change [J].
Thuiller, W .
GLOBAL CHANGE BIOLOGY, 2004, 10 (12) :2020-2027
[82]   Uncertainty in ensembles of global biodiversity scenarios [J].
Thuiller, Wilfried ;
Gueguen, Maya ;
Renaud, Julien ;
Karger, Dirk N. ;
Zimmermann, Niklaus E. .
NATURE COMMUNICATIONS, 2019, 10 (1)
[83]   BIOMOD - a platform for ensemble forecasting of species distributions [J].
Thuiller, Wilfried ;
Lafourcade, Bruno ;
Engler, Robin ;
Araujo, Miguel B. .
ECOGRAPHY, 2009, 32 (03) :369-373
[84]   Minimum required number of specimen records to develop accurate species distribution models [J].
van Proosdij, Andre S. J. ;
Sosef, Marc S. M. ;
Wieringa, Jan J. ;
Raes, Niels .
ECOGRAPHY, 2016, 39 (06) :542-552
[85]   Spatially autocorrelated sampling falsely inflates measures of accuracy for presence-only niche models [J].
Veloz, Samuel D. .
JOURNAL OF BIOGEOGRAPHY, 2009, 36 (12) :2290-2299
[86]   Performance metrics and variance partitioning reveal sources of uncertainty in species distribution models [J].
Watling, James I. ;
Brandt, Laura A. ;
Bucklin, David N. ;
Fujisaki, Ikuko ;
Mazzotti, Frank J. ;
Romanach, Stephanie S. ;
Speroterr, Carolina .
ECOLOGICAL MODELLING, 2015, 309 :48-59
[87]   Effects of sample size on the performance of species distribution models [J].
Wisz, M. S. ;
Hijmans, R. J. ;
Li, J. ;
Peterson, A. T. ;
Graham, C. H. ;
Guisan, A. .
DIVERSITY AND DISTRIBUTIONS, 2008, 14 (05) :763-773
[88]  
Wisz Mary S., 2009, BMC Ecology, V9, P8, DOI 10.1186/1472-6785-9-8
[89]   Predicting species spatial distributions using presence-only data: a case study of native New Zealand ferns [J].
Zaniewski, AE ;
Lehmann, A ;
Overton, JMC .
ECOLOGICAL MODELLING, 2002, 157 (2-3) :261-280