Solitons modelled by Boussinesq-type equations

被引:3
作者
Engelbrecht, Jun [1 ]
Peets, Tanel [1 ]
Tamm, Kert [1 ]
机构
[1] Tallinn Univ Technol, Sch Sci, Dept Cybernet, Lab Solid Mech, Akad Tee 21, EE-12618 Tallinn, Estonia
关键词
Boussinesq-type equation; Solitons; Microstructure; Solids; Biomembranes; NERVE; NONLINEARITIES; PROPAGATION; WAVES;
D O I
10.1016/j.mechrescom.2017.05.008
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Boussinesq-type equations arise in many areas of fluid and solid mechanics where nonlinearities and dispersion are taken into account. In this paper the analysis of two Boussinesq-type models is presented. One model describes propagation of waves in microstructured solids and another one - waves in biomembranes. The main difference between these equations is the structure of the nonlinearities - in case of the microstructure model these are in terms of displacement gradients and in case of the biomembrane - in terms of displacements. Numerical analysis is carried out and differences in the solutions are discussed. Due to the nonlinear character of biomembranes made of lipids, the smaller solitons in biomembranes may travel faster than higher solitons. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:62 / 65
页数:4
相关论文
共 28 条
  • [1] [Anonymous], 2020, Material Inhomogeneities in Elasticity
  • [2] [Anonymous], 1999, Nonlinear Waves in Elastic Crystals
  • [3] GLOBAL EXISTENCE OF SMOOTH SOLUTIONS AND STABILITY OF SOLITARY WAVES FOR A GENERALIZED BOUSSINESQ EQUATION
    BONA, JL
    SACHS, RL
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 118 (01) : 15 - 29
  • [4] On Boussinesq's paradigm in nonlinear wave propagation
    Christov, Christo I.
    Maugin, Gerard A.
    Porubov, Alexey V.
    [J]. COMPTES RENDUS MECANIQUE, 2007, 335 (9-10): : 521 - 535
  • [5] The stretching elasticity of biomembranes determines their line tension and bending rigidity
    Deseri, Luca
    Zurlo, Giuseppe
    [J]. BIOMECHANICS AND MODELING IN MECHANOBIOLOGY, 2013, 12 (06) : 1233 - 1242
  • [6] Waves in microstructured materials and dispersion
    Engelbrecht, J
    Berezovski, A
    Pastrone, F
    Braun, M
    [J]. PHILOSOPHICAL MAGAZINE, 2005, 85 (33-35) : 4127 - 4141
  • [7] ON THE POSSIBLE AMPLIFICATION OF NONLINEAR SEISMIC-WAVES
    ENGELBRECHT, J
    KHAMIDULLIN, Y
    [J]. PHYSICS OF THE EARTH AND PLANETARY INTERIORS, 1988, 50 (01) : 39 - 45
  • [8] Engelbrecht J., 1997, NONLINEAR WAVE DYNAM, DOI [10.1007/978-94-015-8891-1, DOI 10.1007/978-94-015-8891-1]
  • [9] Engelbrecht J., 2015, Questions About Elastic Waves, DOI [10.1007/978-3-319-14791-8, DOI 10.1007/978-3-319-14791-8]
  • [10] Engelbrecht J., 2006, UNIVERSALITY NONCLAS, P29, DOI 10.1007/978-0-387-35851-2_3