Existence and Uniqueness of Weak Solution of p(x)- Laplacian in Sobolev Spaces With Variable Exponents in Complete Manifolds

被引:20
作者
Benslimane, Omar [1 ]
Aberqi, Ahmed [2 ]
Bennouna, Jaouad [1 ]
机构
[1] Sidi Mohamed Ben Abdellah Univ, Fac Sci Dhar Al Mahraz, Dept Math, BP 1796, Atlas Fez, Morocco
[2] Sidi Mohamed Ben Abdellah Univ, Natl Sch Appl Sci Fez, Fes, Morocco
关键词
Non-trivial solution; Lebesgue space with variable exponent; Sobolev spaces Riemannian manifolds; Mountain pass Theorem; EQUATIONS;
D O I
10.2298/FIL2105453B
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper deals with the existence and uniqueness of a non-trivial solution to non-homogeneous p(x)-laplacian equations, managed by non polynomial growth operator in the framework of variable exponent Sobolev spaces on Riemannian manifolds. The mountain pass Theorem is used.
引用
收藏
页码:1453 / 1463
页数:11
相关论文
共 21 条
[11]   Sobolev spaces with variable exponents on Riemannian manifolds [J].
Gaczkowski, Michal ;
Gorka, Przemyslaw .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 92 :47-59
[12]  
Gadea P.M, 2012, ANAL ALGEBRA DIFFERE
[13]   A new regularity criterion for the nematic liquid crystal flows [J].
Gala, Sadek ;
Liu, Qiao ;
Ragusa, Maria Alessandra .
APPLICABLE ANALYSIS, 2012, 91 (09) :1741-1747
[14]   Thermo-visco-elasticity for Norton-Hoff-type models [J].
Gwiazda, Piotr ;
Klawe, Filip Z. ;
Swierczewska-Gwiazda, Agnieszka .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 26 :199-228
[15]   Monotonicity methods in generalized Orlicz spaces for a class of non-Newtonian fluids [J].
Gwiazda, Piotr ;
Swierczewska-Gwiazda, Agnieszka ;
Wroblewska, Aneta .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2010, 33 (02) :125-137
[16]  
Hebey E., 2000, Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities. Courant lecture notes in mathematics
[17]  
Polidoro S, 2008, REV MAT IBEROAM, V24, P1011
[18]  
Radulescu VD, 2015, MONOGR RES NOTES MAT, P1, DOI 10.1201/b18601
[19]  
TRUDINGER NS, 1968, ANN SCUOLA NORM SUP, V22, P265
[20]  
Zhikov VV, 1997, DIFF EQUAT+, V33, P108