Existence and Uniqueness of Weak Solution of p(x)- Laplacian in Sobolev Spaces With Variable Exponents in Complete Manifolds

被引:20
作者
Benslimane, Omar [1 ]
Aberqi, Ahmed [2 ]
Bennouna, Jaouad [1 ]
机构
[1] Sidi Mohamed Ben Abdellah Univ, Fac Sci Dhar Al Mahraz, Dept Math, BP 1796, Atlas Fez, Morocco
[2] Sidi Mohamed Ben Abdellah Univ, Natl Sch Appl Sci Fez, Fes, Morocco
关键词
Non-trivial solution; Lebesgue space with variable exponent; Sobolev spaces Riemannian manifolds; Mountain pass Theorem; EQUATIONS;
D O I
10.2298/FIL2105453B
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper deals with the existence and uniqueness of a non-trivial solution to non-homogeneous p(x)-laplacian equations, managed by non polynomial growth operator in the framework of variable exponent Sobolev spaces on Riemannian manifolds. The mountain pass Theorem is used.
引用
收藏
页码:1453 / 1463
页数:11
相关论文
共 21 条
[1]   Existence and uniqueness of a renormalized solution of parabolic problems in Orlicz spaces [J].
Abercji, A. ;
Bennouna, J. ;
Elmassoudi, M. ;
Hammoumi, M. .
MONATSHEFTE FUR MATHEMATIK, 2019, 189 (02) :195-219
[2]   Nonlinear parabolic inequalities with lower order terms [J].
Aberqi, A. ;
Bennouna, J. ;
Mekkour, M. ;
Redwane, H. .
APPLICABLE ANALYSIS, 2017, 96 (12) :2102-2117
[3]   Regularity results for stationary electro-rheological fluids [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 164 (03) :213-259
[4]  
Aubin T., 1982, NONLINEAR ANAL MANIF
[5]   EXISTENCE RESULT FOR HEMIVARIATIONAL INEQUALITY INVOLVING p(x)-LAPLACIAN [J].
Barnas, Sylwia .
OPUSCULA MATHEMATICA, 2012, 32 (03) :439-454
[6]   Multiplicity of solutions for elliptic quasilinear equations with critical exponent on compact manifolds [J].
Benalili, Mohammed ;
Maliki, Youssef .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) :5946-5960
[7]   Variable exponent, linear growth functionals in image restoration [J].
Chen, Yunmei ;
Levine, Stacey ;
Rao, Murali .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (04) :1383-1406
[8]   Lebesgue and Sobolev Spaces with Variable Exponents [J].
Diening, Lars ;
Harjulehto, Petteri ;
Hasto, Peter ;
Ruzicka, Michael .
LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 :1-+
[9]   Existence of solutions for p(x)-Laplacian Dirichlet problem [J].
Fan, XL ;
Zhang, QH .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 52 (08) :1843-1852
[10]   Sobolev spaces with variable exponents on complete manifolds [J].
Gaczkowski, Michal ;
Gorka, Przemyslaw ;
Pons, Daniel J. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (04) :1379-1415