During constant work rate (CWR) exercise above the lactate threshold (LT), the exponential kinetics of oxygen uptake ((V) over dot(O2)) are supplemented by a (V) over dot(O2) slow component ((V) over dot(O2)) which reduces work efficiency. This has been hypothesised to result from 'fatigue and recruitment', where muscle fatigue during supra-LT exercise elicits recruitment of additional, but poorly efficient, fibres to maintain power production. To test this hypothesis we characterised changes in the power-velocity relationship during sub- and supra-LT cycle ergometry in concert with (V) over dot(O2) kinetics. Eight healthy participants completed a randomized series of 18 experiments consisting of: (1) a CWR phase of 3 or 8 min followed immediately by; (2) a 5 s maximal isokinetic effort to characterize peak power at 60, 90 and 120 rpm. CWR bouts were: 20 W (Con); 80% LT (Mod); 20% Delta (H); 60% Delta (VH); where Delta is the difference between the work rate at LT and (V) over dot(O2) (max). The (V) over dot(O2sc) was 238 +/- 128 and 686 +/- 194 ml min(-1) during H and VH, with no discernible (V) over dot(O2sc) during Mod. Peak power in Con was 1025 +/- 400, 1219 +/- 167 and 1298 +/- 233 W, at 60, 90 and 120 rpm, respectively, and was not different after Mod (P > 0.05). Velocity-specific peak power was significantly reduced (P < 0.05) by 3 min of H (-103 +/- 46 W) and VH (-216 +/- 60 W), with no further change by 8 min. The (V) over dot(O2sc) was correlated with the reduction in peak power (R-2 = 0.49; P < 0.05). These results suggest that muscle fatigue is requisite for the (V) over dot(O2). However, the maintenance of velocity-specific peak power between 3 and 8 min suggests that progressive muscle recruitment is not obligatory. Rather, a reduction in mechanical efficiency in fatigued fibres is implicated.