GLOBAL EXISTENCE AND FINITE DIMENSIONAL GLOBAL ATTRACTOR FOR A 3D DOUBLE VISCOUS MHD-α MODEL

被引:0
作者
Catania, Davide [1 ]
Secchi, Paolo [1 ]
机构
[1] Univ Brescia, Fac Engn, Dept Math, I-25133 Brescia, Italy
关键词
Magnetohydrodynamics; MHD-alpha model; Bardina model; regularizing MHD; turbulence models; incompressible fluid; global attractor; MAGNETOHYDRODYNAMIC EQUATIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a magnetohydrodynamic-alpha model with kinematic viscosity and magnetic diffusivity for an incompressible fluid in a three-dimensional periodic box (torus). Similar models are useful to study the turbulent behavior of fluids in presence of a magnetic field because of the current impossibility to handle non-regularized systems neither analytically nor via numerical simulations. We prove the existence of a global solution and a global attractor. Moreover, we provide an upper bound for the Hausdorff and the fractal dimension of the attractor. This bound can be interpreted in terms of degrees of freedom of the system. In some sense, this result provides an intermediate bound between the number of degrees of freedom for the simplified Bardina model and the Navier-Stokes-alpha equation.
引用
收藏
页码:1021 / 1040
页数:20
相关论文
共 50 条
[41]   THE GLOBAL ATTRACTOR FOR THE 3-D VISCOUS PRIMITIVE EQUATIONS OF LARGE-SCALE MOIST ATMOSPHERE [J].
Zhou, Guoli ;
Guo, Boling .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2018, 16 (07) :2003-2032
[42]   Global solution of 3D axially symmetric nonhomogeneous incompressible MHD equations [J].
Su, Wenhuo ;
Guo, Zhenhua ;
Yang, Ganshan .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (12) :8032-8073
[43]   Finite-dimensional global attractor of the Cahn-Hilliard-Brinkman system [J].
Li, Fang ;
Zhong, Chengkui ;
You, Bo .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 434 (01) :599-616
[44]   Finite dimensional global attractor for a dissipative anisotropic fourth order Schrodinger equation [J].
Alouini, Brahim .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (09) :6037-6067
[45]   Finite dimensional global attractor for a parametric nonlinear Schrodinger system with a trapping potential [J].
Goubet, O. ;
Legry, L. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (12) :4397-4406
[46]   Global existence and large time behavior of strong solutions to the Cauchy problem of the 3D heat conducting incompressible MHD flows [J].
Liu, Yang ;
Zhou, Nan ;
Chang, Da .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 513 (02)
[47]   FINITE DIMENSIONAL GLOBAL ATTRACTOR FOR A BOSE-EINSTEIN EQUATION IN A TWO DIMENSIONAL UNBOUNDED DOMAIN [J].
Alouini, Brahim .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2015, 14 (05) :1781-1801
[48]   Finite-dimensional global attractor for a system modeling the 2D nematic liquid crystal flow [J].
M. Grasselli ;
H. Wu .
Zeitschrift für angewandte Mathematik und Physik, 2011, 62 :979-992
[49]   Finite-dimensional global attractor for a system modeling the 2D nematic liquid crystal flow [J].
Grasselli, M. ;
Wu, H. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2011, 62 (06) :979-992
[50]   Existence and Finite Dimension of a Global Attractor for a Kirchhoff Wave Equation With a Memory Term and a Weak Damping [J].
Qin, Yuming ;
Dai, Leijia ;
Wang, Hongli .
ASYMPTOTIC ANALYSIS, 2025,