GLOBAL EXISTENCE AND FINITE DIMENSIONAL GLOBAL ATTRACTOR FOR A 3D DOUBLE VISCOUS MHD-α MODEL

被引:0
作者
Catania, Davide [1 ]
Secchi, Paolo [1 ]
机构
[1] Univ Brescia, Fac Engn, Dept Math, I-25133 Brescia, Italy
关键词
Magnetohydrodynamics; MHD-alpha model; Bardina model; regularizing MHD; turbulence models; incompressible fluid; global attractor; MAGNETOHYDRODYNAMIC EQUATIONS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a magnetohydrodynamic-alpha model with kinematic viscosity and magnetic diffusivity for an incompressible fluid in a three-dimensional periodic box (torus). Similar models are useful to study the turbulent behavior of fluids in presence of a magnetic field because of the current impossibility to handle non-regularized systems neither analytically nor via numerical simulations. We prove the existence of a global solution and a global attractor. Moreover, we provide an upper bound for the Hausdorff and the fractal dimension of the attractor. This bound can be interpreted in terms of degrees of freedom of the system. In some sense, this result provides an intermediate bound between the number of degrees of freedom for the simplified Bardina model and the Navier-Stokes-alpha equation.
引用
收藏
页码:1021 / 1040
页数:20
相关论文
共 50 条
[21]   GLOBAL WELL-POSEDNESS OF A 3D MHD MODEL IN POROUS MEDIA [J].
Titi, Edriss S. ;
Trabelsi, Saber .
JOURNAL OF GEOMETRIC MECHANICS, 2019, 11 (04) :621-637
[22]   Global Attractor and Singular Limits of the 3D Voigt-regularized Magnetohydrodynamic Equations [J].
Kong, Xuesi ;
Yang, Rong ;
Yan, Xingjie .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2025, 27 (01)
[23]   Finite dimensional global attractor for a fractional nonlinear Schrodinger equation [J].
Goubet, Olivier ;
Zahrouni, Ezzeddine .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2017, 24 (05)
[24]   Global helically symmetric solutions to 3D MHD equations [J].
Wen Gao ;
Zhen-hua Guo ;
Dong-juan Niu .
Acta Mathematicae Applicatae Sinica, English Series, 2014, 30 :347-358
[25]   Global Helically Symmetric Solutions to 3D MHD Equations [J].
Gao, Wen ;
Guo, Zhen-hua ;
Niu, Dong-juan .
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2014, 30 (02) :347-358
[26]   Global solutions to 3D incompressible rotational MHD system [J].
Jaewook Ahn ;
Junha Kim ;
Jihoon Lee .
Journal of Evolution Equations, 2021, 21 :235-246
[27]   Global Helically Symmetric Solutions to 3D MHD Equations [J].
Wen GAO ;
Zhen-hua GUO ;
Dong-juan NIU .
Acta Mathematicae Applicatae Sinica, 2014, (02) :347-358
[28]   Global solutions to 3D incompressible rotational MHD system [J].
Ahn, Jaewook ;
Kim, Junha ;
Lee, Jihoon .
JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (01) :235-246
[29]   Existence of Global Attractor for the One-Dimensional Bipolar Quantum Drift-Diffusion Model [J].
LIU Yannan ;
SUN Wenlong ;
LI Yeping .
WuhanUniversityJournalofNaturalSciences, 2017, 22 (04) :277-282
[30]   APPROXIMATION OF THE TRAJECTORY ATTRACTOR OF THE 3D MHD SYSTEM [J].
Deugoue, Gabriel .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (05) :2119-2144