Identifying the Crystalline Orientation of Black Phosphorus Using Angle-Resolved Polarized Raman Spectroscopy

被引:312
作者
Wu, Juanxia [1 ,4 ]
Mao, Nannan [1 ]
Xie, Liming [3 ]
Xu, Hua [2 ]
Zhang, Jin [1 ]
机构
[1] Peking Univ, Key Lab Phys & Chem Nanodevices, State Key Lab Struct Chem Unstable & Stable Speci, Ctr Nanochem,Beijing Natl Lab Mol Sci,Coll Chem &, Beijing 100871, Peoples R China
[2] Shaanxi Normal Univ, Sch Mat Sci & Engn, Xian 710062, Peoples R China
[3] Chinese Acad Sci, CAS Key Lab Standardizat & Measurement Nanotechno, Natl Ctr Nanosci & Technol, Beijing 100190, Peoples R China
[4] Peking Univ, Acad Adv Interdisciplinary Studies, Beijing 100871, Peoples R China
基金
中国博士后科学基金;
关键词
anisotropy; black phosphorus; crystalline orientation; phosphorene; polarized Raman spectroscopy; FIELD-EFFECT TRANSISTORS;
D O I
10.1002/anie.201410108
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
An optical anisotropic nature of black phosphorus (BP) is revealed by angle-resolved polarized Raman spectroscopy (ARPRS), and for the first time, an all-optical method was realized to identify the crystal orientation of BP sheets, that is, the zigzag and armchair directions. We found that Raman intensities of A(g)(1), B-2g, and A(g)(2) modes of BP not only depend on the polarization angle , but also relate to the sample rotation angle . Furthermore, their intensities reach the local maximum or minimum values when the crystalline orientation is along with the polarization direction of scattered light (e(s)). Combining with the angle-resolved conductance, it is confirmed that A(g)(2) mode intensity achieves a relative larger (or smaller) local maximum under parallel polarization configuration when armchair (or zigzag) direction is parallel to e(s). Therefore, ARPRS can be used as a rapid, precise, and nondestructive method to identify the crystalline orientation of BP layers.
引用
收藏
页码:2366 / 2369
页数:4
相关论文
共 20 条
[1]   POLARIZED RAMAN SPECTRA OF BETA-QUARTZ [J].
BATES, JB ;
QUIST, AS .
JOURNAL OF CHEMICAL PHYSICS, 1972, 56 (04) :1528-+
[2]   Fast and Broadband Photoresponse of Few-Layer Black Phosphorus Field-Effect Transistors [J].
Buscema, Michele ;
Groenendijk, Dirk J. ;
Blanter, Sofya I. ;
Steele, Gary A. ;
van der Zant, Herre S. J. ;
Castellanos-Gomez, Andres .
NANO LETTERS, 2014, 14 (06) :3347-3352
[3]   TWO-DIMENSIONAL CRYSTALS Phosphorus joins the familly [J].
Churchill, Hugh. H. ;
Jarillo-Herrero, Pablo .
NATURE NANOTECHNOLOGY, 2014, 9 (05) :330-331
[4]   Lattice vibrational modes and Raman scattering spectra of strained phosphorene [J].
Fei, Ruixiang ;
Yang, Li .
APPLIED PHYSICS LETTERS, 2014, 105 (08)
[5]   Strain-Engineering the Anisotropic Electrical Conductance of Few-Layer Black Phosphorus [J].
Fei, Ruixiang ;
Yang, Li .
NANO LETTERS, 2014, 14 (05) :2884-2889
[6]  
Li LK, 2014, NAT NANOTECHNOL, V9, P372, DOI [10.1038/NNANO.2014.35, 10.1038/nnano.2014.35]
[7]   The Effect of Dielectric Capping on Few-Layer Phosphorene Transistors: Tuning the Schottky Barrier Heights [J].
Liu, Han ;
Neal, Adam T. ;
Si, Mengwei ;
Du, Yuchen ;
Ye, Peide D. .
IEEE ELECTRON DEVICE LETTERS, 2014, 35 (07) :795-797
[8]   Case study on software refactoring tactics [J].
Liu, Hui ;
Liu, Yang ;
Xue, Guo ;
Gao, Yuan .
IET SOFTWARE, 2014, 8 (01) :1-11
[9]   Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization [J].
Lu, Wanglin ;
Nan, Haiyan ;
Hong, Jinhua ;
Chen, Yuming ;
Zhu, Chen ;
Liang, Zheng ;
Ma, Xiangyang ;
Ni, Zhenhua ;
Jin, Chuanhong ;
Zhang, Ze .
NANO RESEARCH, 2014, 7 (06) :853-859
[10]   Enhanced thermoelectric performance of phosphorene by strain-induced band convergence [J].
Lv, H. Y. ;
Lu, W. J. ;
Shao, D. F. ;
Sun, Y. P. .
PHYSICAL REVIEW B, 2014, 90 (08)