Variants of the two-dimensional Boussinesq equation with compactons, solitons, and periodic solutions

被引:27
作者
Wazwaz, AM [1 ]
机构
[1] St Xavier Univ, Dept Math & Comp Sci, Chicago, IL 60655 USA
关键词
compactons; solitons; periodic solutions; Bossinesq equation; sine-cosine ansatz;
D O I
10.1016/j.camwa.2004.06.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Variants of the two-dimensional Boussinesq equation with positive and negative exponents are studied. The sine-cosine ansatz is fruitfully used to carry out the analysis. Exact solutions of different physical structures: compactons, solitary patterns, solitons, and periodic solutions, are obtained. The quantitative change in the physical structure of the solutions is shown to depend mainly on the exponent of the wave function u(x, t) and on the ratio a/b of the derivatives of u(x, t). (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:295 / 301
页数:7
相关论文
共 38 条
[1]  
Ablowitz M.J., 1991, SOLITONS NONLINEAR E
[2]   On the transverse instabilities of solitary waves [J].
Allen, MA ;
Rowlands, G .
PHYSICS LETTERS A, 1997, 235 (02) :145-146
[3]   From kinks to compactonlike kinks [J].
Dusuel, S ;
Michaux, P ;
Remoissenet, M .
PHYSICAL REVIEW E, 1998, 57 (02) :2320-2326
[4]   Cylindrical solitary pulses in a two-dimensional stabilized Kuramoto-Sivashinsky system [J].
Feng, BF ;
Malomed, BA ;
Kawahara, T .
PHYSICA D-NONLINEAR PHENOMENA, 2003, 175 (3-4) :127-138
[5]   SOLITARY WAVE SOLUTIONS OF NONLINEAR EVOLUTION AND WAVE-EQUATIONS USING A DIRECT METHOD AND MACSYMA [J].
HEREMAN, W ;
TAKAOKA, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (21) :4805-4822
[6]   A GENERAL PHYSICAL APPROACH TO SOLITARY WAVE CONSTRUCTION FROM LINEAR SOLUTIONS [J].
HEREMAN, W ;
KORPEL, A ;
BANERJEE, PP .
WAVE MOTION, 1985, 7 (03) :283-289
[7]   A numerical study of compactons [J].
Ismail, MS ;
Taha, TR .
MATHEMATICS AND COMPUTERS IN SIMULATION, 1998, 47 (06) :519-530
[8]  
Kadomtsev B.B., 1974, SOV PHYS JETP, V39, P285
[9]   Self-focusing and transverse instabilities of solitary waves [J].
Kivshar, YS ;
Pelinovsky, DE .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 331 (04) :118-195
[10]   Exact travelling wave solutions for a generalized Zakharov-Kuznetsov equation [J].
Li, B ;
Chen, Y ;
Zhang, HQ .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 146 (2-3) :653-666